BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30108248)

  • 1. Strong increase in the autofluorescence of cells signals struggle for survival.
    Surre J; Saint-Ruf C; Collin V; Orenga S; Ramjeet M; Matic I
    Sci Rep; 2018 Aug; 8(1):12088. PubMed ID: 30108248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autofluorescence Spectroscopy for Monitoring Metabolism in Animal Cells and Tissues.
    Croce AC; Bottiroli G
    Methods Mol Biol; 2017; 1560():15-43. PubMed ID: 28155143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autofluorescence imaging of NADH and flavoproteins in the rat brain: insights from Monte Carlo simulations.
    L'Heureux B; Gurden H; Pain F
    Opt Express; 2009 Jun; 17(12):9477-90. PubMed ID: 19506595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autofluorescence properties of murine embryonic stem cells during spontaneous differentiation phases.
    Santin G; Paulis M; Vezzoni P; Pacchiana G; Bottiroli G; Croce AC
    Lasers Surg Med; 2013 Nov; 45(9):597-607. PubMed ID: 24114723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autofluorescence spectroscopy for NADH and flavoproteins redox state monitoring in the isolated rat heart subjected to ischemia-reperfusion.
    Papayan G; Petrishchev N; Galagudza M
    Photodiagnosis Photodyn Ther; 2014 Sep; 11(3):400-8. PubMed ID: 24854770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifications of cellular autofluorescence emission spectra under oxidative stress induced by 1 alpha,25dihydroxyvitamin D(3) and its analog EB1089.
    Bondza-Kibangou P; Millot C; Dufer J; Millot JM
    Technol Cancer Res Treat; 2004 Aug; 3(4):383-91. PubMed ID: 15270590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression profiling of oxidative stress on atrial fibrillation in humans.
    Kim YH; Lim DS; Lee JH; Shim WJ; Ro YM; Park GH; Becker KG; Cho-Chung YS; Kim MK
    Exp Mol Med; 2003 Oct; 35(5):336-49. PubMed ID: 14646586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory mechanisms of thiol-based redox sensors: lessons learned from structural studies on prokaryotic redox sensors.
    Lee SJ; Kim DG; Lee KY; Koo JS; Lee BJ
    Arch Pharm Res; 2018 Jun; 41(6):583-593. PubMed ID: 29777359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autofluorescence-based optical biopsy: An effective diagnostic tool in hepatology.
    Croce AC; Ferrigno A; Bottiroli G; Vairetti M
    Liver Int; 2018 Jul; 38(7):1160-1174. PubMed ID: 29624848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypochlorous acid-induced modulation of cellular redox status in HeLa cells.
    Park SY; Shin SW; Lee SM; Park JW
    Arch Pharm Res; 2008 Jul; 31(7):905-10. PubMed ID: 18704334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing Oxidative Cellular Stress Induced by Nanoparticles in the Subcytotoxic Range Using Fluorescence Lifetime Imaging.
    Balke J; Volz P; Neumann F; Brodwolf R; Wolf A; Pischon H; Radbruch M; Mundhenk L; Gruber AD; Ma N; Alexiev U
    Small; 2018 Jun; 14(23):e1800310. PubMed ID: 29726099
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular autofluorescence--is it due to flavins?
    Benson RC; Meyer RA; Zaruba ME; McKhann GM
    J Histochem Cytochem; 1979 Jan; 27(1):44-8. PubMed ID: 438504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New light in flavin autofluorescence.
    Croce AC; Bottiroli G
    Eur J Histochem; 2015 Nov; 59(4):2576. PubMed ID: 26708187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury.
    Rayner BS; Duong TT; Myers SJ; Witting PK
    J Neurochem; 2006 Apr; 97(1):211-21. PubMed ID: 16524376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain.
    Jiang J; Briedé JJ; Jennen DG; Van Summeren A; Saritas-Brauers K; Schaart G; Kleinjans JC; de Kok TM
    Toxicol Lett; 2015 Apr; 234(2):139-50. PubMed ID: 25704631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autofluorescence of liver tissue and bile: organ functionality monitoring during ischemia and reoxygenation.
    Croce AC; Ferrigno A; Santin G; Piccolini VM; Bottiroli G; Vairetti M
    Lasers Surg Med; 2014 Jul; 46(5):412-21. PubMed ID: 24619664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic signature to oxidative stress exposure at the time of embryonic genome activation in bovine blastocysts.
    Cagnone GL; Sirard MA
    Mol Reprod Dev; 2013 Apr; 80(4):297-314. PubMed ID: 23426876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells.
    Hossain ST; Mukherjee SK
    J Hazard Mater; 2013 Sep; 260():1073-82. PubMed ID: 23892173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery and Function of a General Core Hormetic Stress Response in E. coli Induced by Sublethal Concentrations of Antibiotics.
    Mathieu A; Fleurier S; Frénoy A; Dairou J; Bredeche MF; Sanchez-Vizuete P; Song X; Matic I
    Cell Rep; 2016 Sep; 17(1):46-57. PubMed ID: 27681420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.