These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30108250)

  • 1. Revelation of early detection of co-seismic ionospheric perturbations in GPS-TEC from realistic modelling approach: Case study.
    Thomas D; Bagiya MS; Sunil PS; Rolland L; Sunil AS; Mikesell TD; Nayak S; Mangalampalli S; Ramesh DS
    Sci Rep; 2018 Aug; 8(1):12105. PubMed ID: 30108250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Ionospheric view of the 2011 Tohoku-Oki earthquake seismic source: the first 60 seconds of the rupture.
    Bagiya MS; Thomas D; Astafyeva E; Bletery Q; Lognonné P; Ramesh DS
    Sci Rep; 2020 Mar; 10(1):5232. PubMed ID: 32251306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionospheric GNSS Imagery of Seismic Source: Possibilities, Difficulties, and Challenges.
    Astafyeva E; Shults K
    J Geophys Res Space Phys; 2019 Jan; 124(1):534-543. PubMed ID: 31008005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the Impact of Non-Tectonic Forcing mechanisms on GNSS measured Coseismic Ionospheric Perturbations.
    Bagiya MS; Sunil AS; Rolland L; Nayak S; Ponraj M; Thomas D; Ramesh DS
    Sci Rep; 2019 Dec; 9(1):18640. PubMed ID: 31819071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of possible ionospheric precursor caused by Papua New Guinea earthquake (Mw 7.5).
    Ulukavak M; Inyurt S
    Environ Monit Assess; 2020 Feb; 192(3):190. PubMed ID: 32078061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Author Correction: Revelation of early detection of co-seismic ionospheric perturbations in GPS-TEC from realistic modelling approach: Case study.
    Thomas D; Bagiya MS; Sunil PS; Rolland L; Sunil AS; Mikesell TD; Nayak S; Mangalampalli S; Ramesh DS
    Sci Rep; 2018 Nov; 8(1):16453. PubMed ID: 30382150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-Time Detection of Tsunami Ionospheric Disturbances with a Stand-Alone GNSS Receiver: A Preliminary Feasibility Demonstration.
    Savastano G; Komjathy A; Verkhoglyadova O; Mazzoni A; Crespi M; Wei Y; Mannucci AJ
    Sci Rep; 2017 Apr; 7():46607. PubMed ID: 28429754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of GIM-TEC disturbances before M ≥ 6.0 inland earthquakes during 2003-2017.
    Zhu F; Jiang Y
    Sci Rep; 2020 Oct; 10(1):18038. PubMed ID: 33093593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tsunami detection by GPS-derived ionospheric total electron content.
    Shrivastava MN; Maurya AK; Gonzalez G; Sunil PS; Gonzalez J; Salazar P; Aranguiz R
    Sci Rep; 2021 Jun; 11(1):12978. PubMed ID: 34155312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Storm time IRI-Plas model forecast for an African equatorial station.
    Adebiyi SJ; Ikubanni SO; Adebesin BO; Adeniyi JO; Joshua BW; Adimula IA; Oladipo OA; Olawepo AO; Adekoya BJ
    Heliyon; 2019 Jun; 5(6):e01844. PubMed ID: 31194128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial and Temporal Variations of Polar Ionospheric Total Electron Content over Nearly Thirteen Years.
    Xi H; Jiang H; An J; Wang Z; Xu X; Yan H; Feng C
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A possible space-based tsunami early warning system using observations of the tsunami ionospheric hole.
    Kamogawa M; Orihara Y; Tsurudome C; Tomida Y; Kanaya T; Ikeda D; Gusman AR; Kakinami Y; Liu JY; Toyoda A
    Sci Rep; 2016 Dec; 6():37989. PubMed ID: 27905487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of Spatial and Temporal Variations of Ionospheric Total Electron Content in Japan, during 2014-2019 and the 2016 Kumamoto Earthquake.
    Hu T; Yao Y; Kong J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Earthquake precursory detection using diurnal GPS-TEC and kriging interpolation maps: 12 May 2008, Mw7.9 Wenchuan case study.
    Thammaboribal P; Tripathi NK; Ninsawat S; Pal I
    MethodsX; 2022; 9():101617. PubMed ID: 35096532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GNSS total variometric approach: first demonstration of a tool for real-time tsunami genesis estimation.
    Ravanelli M; Occhipinti G; Savastano G; Komjathy A; Shume EB; Crespi M
    Sci Rep; 2021 Feb; 11(1):3114. PubMed ID: 33542366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction.
    Huang L; Zhang H; Xu P; Geng J; Wang C; Liu J
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28264424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General resource for ionospheric transient investigations (GRITI): An open-source code developed in support of the Dinsmore et al. (2021) results.
    Dinsmore R; Mathews JD; Urbina J
    MethodsX; 2021; 8():101456. PubMed ID: 34430337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations.
    Nykiel G; Zanimonskiy YM; Yampolski YM; Figurski M
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28994718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithosphere atmosphere ionosphere coupling associated with the 2019 M
    Mehdi S; Shah M; Naqvi NA
    Environ Monit Assess; 2021 Jul; 193(8):501. PubMed ID: 34291335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionospheric redistribution during geomagnetic storms.
    Immel TJ; Mannucci AJ
    J Geophys Res Space Phys; 2013 Dec; 118(12):7928-7939. PubMed ID: 26167429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.