BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30108260)

  • 1. Automated fluorescence intensity and gradient analysis enables detection of rare fluorescent mutant cells deep within the tissue of RaDR mice.
    Wadduwage DN; Kay J; Singh VR; Kiraly O; Sukup-Jackson MR; Rajapakse J; Engelward BP; So PTC
    Sci Rep; 2018 Aug; 8(1):12108. PubMed ID: 30108260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo.
    Sukup-Jackson MR; Kiraly O; Kay JE; Na L; Rowland EA; Winther KE; Chow DN; Kimoto T; Matsuguchi T; Jonnalagadda VS; Maklakova VI; Singh VR; Wadduwage DN; Rajapakse J; So PT; Collier LS; Engelward BP
    PLoS Genet; 2014 Jun; 10(6):e1004299. PubMed ID: 24901438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant cells in the lung increase with age via de novo recombination events and clonal expansion.
    Kimoto T; Kay JE; Li N; Engelward BP
    Environ Mol Mutagen; 2017 Apr; 58(3):135-145. PubMed ID: 28370323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic mice harboring direct repeat substrates reveal key underlying causes of homologous recombination in vivo.
    Moise AC; Kay JE; Engelward BP
    DNA Repair (Amst); 2022 Dec; 120():103419. PubMed ID: 36257175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous mitotic homologous recombination at an enhanced yellow fluorescent protein (EYFP) cDNA direct repeat in transgenic mice.
    Hendricks CA; Almeida KH; Stitt MS; Jonnalagadda VS; Rugo RE; Kerrison GF; Engelward BP
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6325-30. PubMed ID: 12750464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence and Bioluminescence Imaging of Orthotopic Brain Tumors in Mice.
    McKinnon E; Moore A; Dixit S; Zhu Y; Broome AM
    Methods Mol Biol; 2017; 1530():283-305. PubMed ID: 28150209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of fluorescence for detecting rare sequence rearrangements in vivo.
    Wiktor-Brown DM; Hendricks CA; Olipitz W; Rogers AB; Engelward BP
    Cell Cycle; 2006 Dec; 5(23):2715-9. PubMed ID: 17172860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-dependent accumulation of recombinant cells in the mouse pancreas revealed by in situ fluorescence imaging.
    Wiktor-Brown DM; Hendricks CA; Olipitz W; Engelward BP
    Proc Natl Acad Sci U S A; 2006 Aug; 103(32):11862-7. PubMed ID: 16882718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an inducible mouse model of iRFP713 to track recombinase activity and tumour development in vivo.
    Hock AK; Cheung EC; Humpton TJ; Monteverde T; Paulus-Hock V; Lee P; McGhee E; Scopelliti A; Murphy DJ; Strathdee D; Blyth K; Vousden KH
    Sci Rep; 2017 May; 7(1):1837. PubMed ID: 28500323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extensions of MADM (mosaic analysis with double markers) in mice.
    Tasic B; Miyamichi K; Hippenmeyer S; Dani VS; Zeng H; Joo W; Zong H; Chen-Tsai Y; Luo L
    PLoS One; 2012; 7(3):e33332. PubMed ID: 22479386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Deep Learning in Automated Analysis of Molecular Images in Cancer: A Survey.
    Xue Y; Chen S; Qin J; Liu Y; Huang B; Chen H
    Contrast Media Mol Imaging; 2017; 2017():9512370. PubMed ID: 29114182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.
    Shi J; Liu F; Zhang G; Luo J; Bai J
    J Biomed Opt; 2014 Apr; 19(4):046018. PubMed ID: 24781587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and loss of alleles in cultured mouse embryonic fibroblasts and stem cells carrying allelic fluorescent protein genes.
    Larson JS; Yin M; Fischer JM; Stringer SL; Stringer JR
    BMC Mol Biol; 2006 Oct; 7():36. PubMed ID: 17042952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new mouse model for noninvasive fluorescence-based monitoring of mitochondrial UCP1 expression.
    Kawarasaki S; Kuwata H; Sawazaki H; Sakamoto T; Nitta T; Kim CS; Jheng HF; Takahashi H; Nomura W; Ara T; Takahashi N; Tomita K; Yu R; Kawada T; Goto T
    FEBS Lett; 2019 Jun; 593(11):1201-1212. PubMed ID: 31074834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated one- and two-photon imaging platform reveals clonal expansion as a major driver of mutation load.
    Wiktor-Brown DM; Kwon HS; Nam YS; So PT; Engelward BP
    Proc Natl Acad Sci U S A; 2008 Jul; 105(30):10314-9. PubMed ID: 18647827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems Biology Approaches in Cancer Pathology.
    DeWard A; Critchley-Thorne RJ
    Methods Mol Biol; 2018; 1711():261-273. PubMed ID: 29344894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cre-reporter transgenic mouse expressing the far-red fluorescent protein Katushka.
    Diéguez-Hurtado R; Martín J; Martínez-Corral I; Martínez MD; Megías D; Olmeda D; Ortega S
    Genesis; 2011 Jan; 49(1):36-45. PubMed ID: 21254335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular imaging based on x-ray fluorescent high-Z tracers.
    Müller BH; Hoeschen C; Grüner F; Arkadiev VA; Johnson TR
    Phys Med Biol; 2013 Nov; 58(22):8063-76. PubMed ID: 24172988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZF-Mapper: Simple and Complete Freeware for Fluorescence Quantification in Zebrafish Images.
    Yamamoto D; Sato D; Nakayama H; Nakagawa Y; Shimada Y
    Zebrafish; 2019 Jun; 16(3):233-239. PubMed ID: 30855222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical whole body time domain fluorescence lifetime multiplexing of fluorescent proteins.
    Rice WL; Kumar AT
    J Biomed Opt; 2014 Apr; 19(4):046005. PubMed ID: 24715027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.