BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30108284)

  • 21. The visual neuroecology of anisoptera.
    Lancer BH; Evans BJE; Wiederman SD
    Curr Opin Insect Sci; 2020 Dec; 42():14-22. PubMed ID: 32841784
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homologization of the flight musculature of zygoptera (insecta: odonata) and neoptera (insecta).
    Büsse S; Genet C; Hörnschemeyer T
    PLoS One; 2013; 8(2):e55787. PubMed ID: 23457479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The first Late Triassic Chinese triadophlebiomorphan (Insecta: Odonatoptera): biogeographic implications.
    Zheng D; Nel A; Wang H; Wang B; Jarzembowski EA; Chang SC; Zhang H
    Sci Rep; 2017 May; 7(1):1476. PubMed ID: 28469188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation.
    Rajabi H; Ghoroubi N; Malaki M; Darvizeh A; Gorb SN
    PLoS One; 2016; 11(8):e0160610. PubMed ID: 27513753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The thorax musculature of Anisoptera (Insecta: Odonata) nymphs and its evolutionary relevance.
    Büsse S; Hörnschemeyer T
    BMC Evol Biol; 2013 Nov; 13():237. PubMed ID: 24180622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Internal models direct dragonfly interception steering.
    Mischiati M; Lin HT; Herold P; Imler E; Olberg R; Leonardo A
    Nature; 2015 Jan; 517(7534):333-8. PubMed ID: 25487153
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery mechanisms in the dragonfly righting reflex.
    Wang ZJ; Melfi J; Leonardo A
    Science; 2022 May; 376(6594):754-758. PubMed ID: 35549420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Binocular Encoding in the Damselfly Pre-motor Target Tracking System.
    Supple JA; Pinto-Benito D; Khoo C; Wardill TJ; Fabian ST; Liu M; Pusdekar S; Galeano D; Pan J; Jiang S; Wang Y; Liu L; Peng H; Olberg RM; Gonzalez-Bellido PT
    Curr Biol; 2020 Feb; 30(4):645-656.e4. PubMed ID: 31956029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Allometric Scaling Reveals Evolutionary Constraint on Odonata Wing Cellularity via Critical Crack Length.
    Eshghi S; Rajabi H; Shafaghi S; Nabati F; Nazerian S; Darvizeh A; Gorb SN
    Adv Sci (Weinh); 2024 Jun; 11(23):e2400844. PubMed ID: 38613834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relatively large wings facilitate life at higher elevations among Nearctic dragonflies.
    Moore MP; Khan F
    J Anim Ecol; 2023 Aug; 92(8):1613-1621. PubMed ID: 37211719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evolution of insect wings and development - new details from Palaeozoic nymphs.
    Haug JT; Haug C; Garwood RJ
    Biol Rev Camb Philos Soc; 2016 Feb; 91(1):53-69. PubMed ID: 25400084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dragonflies use underdamped pursuit to chase conspecifics.
    Lohmann AC; Corcoran AJ; Hedrick TL
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31186342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phenotypic plasticity in specialists: How long-spined larval Sympetrum depressiusculum (Odonata: Libellulidae) responds to combined predator cues.
    Šigutová H; Šigut M; Dolný A
    PLoS One; 2018; 13(8):e0201406. PubMed ID: 30089145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eight pairs of descending visual neurons in the dragonfly give wing motor centers accurate population vector of prey direction.
    Gonzalez-Bellido PT; Peng H; Yang J; Georgopoulos AP; Olberg RM
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):696-701. PubMed ID: 23213224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linking biomechanics and ecology through predator-prey interactions: flight performance of dragonflies and their prey.
    Combes SA; Rundle DE; Iwasaki JM; Crall JD
    J Exp Biol; 2012 Mar; 215(Pt 6):903-13. PubMed ID: 22357584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.
    Koehler C; Liang Z; Gaston Z; Wan H; Dong H
    J Exp Biol; 2012 Sep; 215(Pt 17):3018-27. PubMed ID: 22660780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual control of prey-capture flight in dragonflies.
    Olberg RM
    Curr Opin Neurobiol; 2012 Apr; 22(2):267-71. PubMed ID: 22195994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental and Numerical Investigation on Dragonfly Wing and Body Motion during Voluntary Take-off.
    Li Q; Zheng M; Pan T; Su G
    Sci Rep; 2018 Jan; 8(1):1011. PubMed ID: 29343709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flying in reverse: kinematics and aerodynamics of a dragonfly in backward free flight.
    Bode-Oke AT; Zeyghami S; Dong H
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29950513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. First record of hawker dragonflies from Eocene Baltic amber (Odonata: Anisoptera: Gomphaeschnidae).
    Pinkert S; Bechly G; Nel A
    Zootaxa; 2017 May; 4272(2):263-275. PubMed ID: 28610295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.