These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30108510)

  • 1.
    Jones JS; Small DM; Nishimura N
    Front Physiol; 2018; 9():969. PubMed ID: 30108510
    [No Abstract]   [Full Text] [Related]  

  • 2. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intravital Microscopy of the Beating Murine Heart to Understand Cardiac Leukocyte Dynamics.
    Allan-Rahill NH; Lamont MRE; Chilian WM; Nishimura N; Small DM
    Front Immunol; 2020; 11():92. PubMed ID: 32117249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-speed 2D light-sheet fluorescence microscopy enables quantification of spatially varying calcium dynamics in ventricular cardiomyocytes.
    Dvinskikh L; Sparks H; MacLeod KT; Dunsby C
    Front Physiol; 2023; 14():1079727. PubMed ID: 36866170
    [No Abstract]   [Full Text] [Related]  

  • 5. Dissection of local Ca(2+) signals inside cytosol by ER-targeted Ca(2+) indicator.
    Niwa F; Sakuragi S; Kobayashi A; Takagi S; Oda Y; Bannai H; Mikoshiba K
    Biochem Biophys Res Commun; 2016 Oct; 479(1):67-73. PubMed ID: 27616195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Imaging the beating heart in the mouse using intravital microscopy techniques.
    Vinegoni C; Aguirre AD; Lee S; Weissleder R
    Nat Protoc; 2015 Nov; 10(11):1802-19. PubMed ID: 26492138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing Cardiomyocyte Excitation-Contraction Coupling Site Detection From Live Cell Imaging Using a Structurally-Realistic Computational Model of Calcium Release.
    Ladd D; Tilūnaitė A; Roderick HL; Soeller C; Crampin EJ; Rajagopal V
    Front Physiol; 2019; 10():1263. PubMed ID: 31632297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive evaluation of contractile behavior of cardiomyocyte monolayers based on motion vector analysis.
    Hayakawa T; Kunihiro T; Dowaki S; Uno H; Matsui E; Uchida M; Kobayashi S; Yasuda A; Shimizu T; Okano T
    Tissue Eng Part C Methods; 2012 Jan; 18(1):21-32. PubMed ID: 21851323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium Signal Analysis in the Zebrafish Heart via Phase Matching of the Cardiac Cycle.
    Zhang RJ; Vermot J; Gherardi R; Fukui H; Chow RW
    Bio Protoc; 2024 May; 14(10):e4989. PubMed ID: 38798980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravital imaging of cardiac tissue utilizing tissue-stabilized heart window chamber in live animal model.
    Ahn S; Yoon JY; Kim P
    Eur Heart J Imaging Methods Pract; 2024 Jan; 2(1):qyae062. PubMed ID: 39224098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved spike inference accuracy by estimating the peak amplitude of unitary [Ca
    Éltes T; Szoboszlay M; Kerti-Szigeti K; Nusser Z
    J Physiol; 2019 Jun; 597(11):2925-2947. PubMed ID: 31006863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging Intracellular Ca
    Campo A; Mongillo M
    Methods Mol Biol; 2019; 1925():111-125. PubMed ID: 30674021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo calcium imaging from genetically specified target cells in mouse cerebellum.
    Díez-García J; Akemann W; Knöpfel T
    Neuroimage; 2007 Feb; 34(3):859-69. PubMed ID: 17161628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging Ca2+ nanosparks in heart with a new targeted biosensor.
    Shang W; Lu F; Sun T; Xu J; Li LL; Wang Y; Wang G; Chen L; Wang X; Cannell MB; Wang SQ; Cheng H
    Circ Res; 2014 Jan; 114(3):412-20. PubMed ID: 24257462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GCaMP expression in retinal ganglion cells characterized using a low-cost fundus imaging system.
    Chang YC; Walston ST; Chow RH; Weiland JD
    J Neural Eng; 2017 Oct; 14(5):056018. PubMed ID: 28930702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiphoton Microscopic Observation of Vessels in Mouse Liver Tissue.
    Rongrong W; Ru L; Sixiao H; Ziqing W; Junhao H; Liying Z; Zhihui T; Qiang M
    J Vis Exp; 2021 May; (171):. PubMed ID: 34057432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered heart tissue models from hiPSC-derived cardiomyocytes and cardiac ECM for disease modeling and drug testing applications.
    Goldfracht I; Efraim Y; Shinnawi R; Kovalev E; Huber I; Gepstein A; Arbel G; Shaheen N; Tiburcy M; Zimmermann WH; Machluf M; Gepstein L
    Acta Biomater; 2019 Jul; 92():145-159. PubMed ID: 31075518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphoton excitation of autofluorescence for microscopy of glioma tissue.
    Leppert J; Krajewski J; Kantelhardt SR; Schlaffer S; Petkus N; Reusche E; Hüttmann G; Giese A
    Neurosurgery; 2006 Apr; 58(4):759-67; discussion 759-67. PubMed ID: 16575340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intravital multiphoton microscopic imaging platform for ocular surface imaging.
    Wu YF; Wang CY; Yang TL; Tsao PN; Lin SJ; Tan HY
    Exp Eye Res; 2019 May; 182():194-201. PubMed ID: 30822399
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.