These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 30108628)

  • 1. 25 Years of sensory drive: the evidence and its watery bias.
    Cummings ME; Endler JA;
    Curr Zool; 2018 Aug; 64(4):471-484. PubMed ID: 30108628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecology and behavior predict an evolutionary trade-off between song complexity and elaborate plumages in antwrens (Aves, Thamnophilidae).
    Beco R; Silveira LF; Derryberry EP; Bravo GA
    Evolution; 2021 Oct; 75(10):2388-2410. PubMed ID: 34382212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A different view: sensory drive in the polarized-light realm.
    Cronin TW;
    Curr Zool; 2018 Aug; 64(4):513-523. PubMed ID: 30108632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Song divergence by sensory drive in Amazonian birds.
    Tobias JA; Aben J; Brumfield RT; Derryberry EP; Halfwerk W; Slabbekoorn H; Seddon N
    Evolution; 2010 Oct; 64(10):2820-39. PubMed ID: 20561048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary ecology of chemosensation and its role in sensory drive.
    Yohe LR; Brand P;
    Curr Zool; 2018 Aug; 64(4):525-533. PubMed ID: 30108633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual "playback" of colorful signals in the field supports sensory drive for signal detectability.
    Gunderson AR; Fleishman LJ; Leal M;
    Curr Zool; 2018 Aug; 64(4):493-498. PubMed ID: 30108630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory drive does not explain reproductive character displacement of male acoustic signals in the upland chorus frog (Pseudacris feriarum).
    Malone JH; Ribado J; Lemmon EM
    Evolution; 2014 May; 68(5):1306-19. PubMed ID: 24475782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetically explicit model of speciation by sensory drive within a continuous population in aquatic environments.
    Kawata M; Shoji A; Kawamura S; Seehausen O
    BMC Evol Biol; 2007 Jun; 7():99. PubMed ID: 17598893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensory trade-offs predict signal divergence in Surfperch.
    Cummings ME
    Evolution; 2007 Mar; 61(3):530-45. PubMed ID: 17348918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple Sensory Modalities in Diurnal Geckos Is Associated with the Signaling Environment and Evolutionary Constraints.
    Kabir MS; Venkatesan R; Thaker M
    Integr Org Biol; 2020; 2(1):obaa027. PubMed ID: 33791567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Otolith shape lends support to the sensory drive hypothesis in rockfishes.
    Tuset VM; Otero-Ferrer JL; Gómez-Zurita J; Venerus LA; Stransky C; Imondi R; Orlov AM; Ye Z; Santschi L; Afanasiev PK; Zhuang L; Farré M; Love MS; Lombarte A
    J Evol Biol; 2016 Oct; 29(10):2083-2097. PubMed ID: 27364643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid diversification of sexual signals in Hawaiian Nesosydne planthoppers (Hemiptera: Delphacidae): the relative role of neutral and selective forces.
    Goodman KR; Kelley JP; Welter SC; Roderick GK; Elias DO
    J Evol Biol; 2015 Feb; 28(2):415-27. PubMed ID: 25535672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ecology of fish parasites with particular reference to helminth parasites and their salmonid fish hosts in Welsh rivers: a review of some of the central questions.
    Thomas JD
    Adv Parasitol; 2002; 52():1-154. PubMed ID: 12521260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal visual statistics of aquatic environments in the natural habitats of zebrafish.
    Cai LT; Krishna VS; Hladnik TC; Guilbeault NC; Vijayakumar C; Arunachalam M; Juntti SA; Arrenberg AB; Thiele TR; Cooper EA
    Sci Rep; 2023 Jul; 13(1):12028. PubMed ID: 37491571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The function and consequences of fluorescence in tetrapods.
    Nicolaï MPJ; Bok MJ; Abalos J; D'Alba L; Shawkey MD; Goldenberg J
    Proc Natl Acad Sci U S A; 2024 Jun; 121(24):e2318189121. PubMed ID: 38814876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic architecture of sensory exploitation: QTL mapping of female and male receiver traits in an acoustic moth.
    Alem S; Streiff R; Courtois B; Zenboudji S; Limousin D; Greenfield MD
    J Evol Biol; 2013 Dec; 26(12):2581-96. PubMed ID: 24118224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on environmental alterations propagating from aquatic to terrestrial ecosystems.
    Schulz R; Bundschuh M; Gergs R; Brühl CA; Diehl D; Entling MH; Fahse L; Frör O; Jungkunst HF; Lorke A; Schäfer RB; Schaumann GE; Schwenk K
    Sci Total Environ; 2015 Dec; 538():246-61. PubMed ID: 26311581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Community disassembly in ephemeral ecosystems.
    O'Neill BJ
    Ecology; 2016 Dec; 97(12):3285-3292. PubMed ID: 27861768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental Correlates of Sexual Signaling in the Heteroptera: A Prospective Study.
    Gourevitch EHZ; Shuker DM
    Insects; 2021 Nov; 12(12):. PubMed ID: 34940167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustic communication in marine shallow waters: testing the acoustic adaptive hypothesis in sand gobies.
    Amorim MCP; Vasconcelos RO; Bolgan M; Pedroso SS; Fonseca PJ
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30171096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.