These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 30108727)

  • 1. Dark chemical matter in public screening assays and derivation of target hypotheses.
    Jasial S; Bajorath J
    Medchemcomm; 2017 Nov; 8(11):2100-2104. PubMed ID: 30108727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Structural Relationships between Bioactive and Commercial Chemical Space and Developing Target Hypotheses for Compound Acquisition.
    Cerchia C; Dimova D; Lavecchia A; Bajorath J
    ACS Omega; 2017 Nov; 2(11):7760-7766. PubMed ID: 30023563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of Dark Chemical Matter in High Throughput Screening.
    Muegge I; Mukherjee P
    J Med Chem; 2016 Nov; 59(21):9806-9813. PubMed ID: 27762554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-Promiscuity Relationship Puzzles-Extensively Assayed Analogs with Large Differences in Target Annotations.
    Hu Y; Jasial S; Gilberg E; Bajorath J
    AAPS J; 2017 May; 19(3):856-864. PubMed ID: 28265982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Connectivity Predefines Polypharmacology: Aliphatic Rings, Chirality, and sp
    Monteleone S; Fuchs JE; Liedl KR
    Front Pharmacol; 2017; 8():552. PubMed ID: 28894419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drugs as habitable planets in the space of dark chemical matter.
    Siramshetty VB; Preissner R
    Drug Discov Today; 2018 Mar; 23(3):481-486. PubMed ID: 28709991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deorphanization strategies for dark chemical matter.
    Wassermann AM; Tudor M; Glick M
    Drug Discov Today Technol; 2017 Mar; 23():69-74. PubMed ID: 28647088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dark chemical matter as a promising starting point for drug lead discovery.
    Wassermann AM; Lounkine E; Hoepfner D; Le Goff G; King FJ; Studer C; Peltier JM; Grippo ML; Prindle V; Tao J; Schuffenhauer A; Wallace IM; Chen S; Krastel P; Cobos-Correa A; Parker CN; Davies JW; Glick M
    Nat Chem Biol; 2015 Dec; 11(12):958-66. PubMed ID: 26479441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Promiscuous Compounds with Activity against Different Target Classes.
    Feldmann C; Miljković F; Yonchev D; Bajorath J
    Molecules; 2019 Nov; 24(22):. PubMed ID: 31752252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds.
    Jasial S; Hu Y; Bajorath J
    J Med Chem; 2017 May; 60(9):3879-3886. PubMed ID: 28421750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Docking Finds GPCR Ligands in Dark Chemical Matter.
    Ballante F; Rudling A; Zeifman A; Luttens A; Vo DD; Irwin JJ; Kihlberg J; Brea J; Loza MI; Carlsson J
    J Med Chem; 2020 Jan; 63(2):613-620. PubMed ID: 31846328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determining the Degree of Promiscuity of Extensively Assayed Compounds.
    Jasial S; Hu Y; Bajorath J
    PLoS One; 2016; 11(4):e0153873. PubMed ID: 27082988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a New Scaffold Concept for Computational Target Deconvolution of Chemical Cancer Cell Line Screens.
    Kunimoto R; Dimova D; Bajorath J
    ACS Omega; 2017 Apr; 2(4):1463-1468. PubMed ID: 30023635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS.
    Capuzzi SJ; Muratov EN; Tropsha A
    J Chem Inf Model; 2017 Mar; 57(3):417-427. PubMed ID: 28165734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity.
    Gilberg E; Stumpfe D; Bajorath J
    F1000Res; 2017; 6():. PubMed ID: 28928939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Assessment of Molecular Selectivity at the Level of Targets, Bioactive Compounds, and Structural Analogues.
    Hu Y; Bajorath J
    ChemMedChem; 2016 Jun; 11(12):1362-70. PubMed ID: 26358784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotoxicity of fractionated organic material in airborne particles from São Paulo, Brazil.
    De Martinis BS; Kado NY; de Carvalho LR; Okamoto RA; Gundel LA
    Mutat Res; 1999 Oct; 446(1):83-94. PubMed ID: 10613188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplet states of the nonlinear optical chromophore DCM in single crystals of potassium hydrogen phthalate and their relationship to single-molecule dark states.
    Barbon A; Bott ED; Brustolon M; Fabris M; Kahr B; Kaminsky W; Reid PJ; Wong SM; Wustholz KL; Zanré R
    J Am Chem Soc; 2009 Aug; 131(32):11548-57. PubMed ID: 19639938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice.
    Evans MV; Caldwell JC
    Toxicol Appl Pharmacol; 2010 May; 244(3):280-90. PubMed ID: 20153349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical genomics reveals mechanistic hypotheses for uncharacterized bioactive molecules in bacteria.
    French S; Ellis MJ; Coutts BE; Brown ED
    Curr Opin Microbiol; 2017 Oct; 39():42-47. PubMed ID: 28957731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.