These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 3010878)

  • 1. Endogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans: ATPase-independent efflux of H+ and Na+ from respiring cells.
    Erber WW; Nitschmann WH; Muchl R; Peschek GA
    Arch Biochem Biophys; 1986 May; 247(1):28-39. PubMed ID: 3010878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exogenous energy supply to the plasma membrane of dark anaerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force.
    Peschek GA; Hinterstoisser B; Riedler M; Muchl R; Nitschmann WH
    Arch Biochem Biophys; 1986 May; 247(1):40-8. PubMed ID: 3010879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vanadate and dicyclohexylcarbodiimide insensitive proton extrusion from oxygen pulsed cells of the cyanobacterium Anacystis nidulans.
    Nitschmann WH; Peschek GA
    Biochem Biophys Res Commun; 1984 Aug; 123(1):358-64. PubMed ID: 6433918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative phosphorylation and energy buffering in cyanobacteria.
    Nitschmann WH; Peschek GA
    J Bacteriol; 1986 Dec; 168(3):1205-11. PubMed ID: 3023299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delta mu Na+ drives the synthesis of ATP via an delta mu Na(+)-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1.
    Becher B; Müller V
    J Bacteriol; 1994 May; 176(9):2543-50. PubMed ID: 8169202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria.
    Apte SK; Thomas J
    Eur J Biochem; 1986 Jan; 154(2):395-401. PubMed ID: 3080316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium chloride stimulated respiration of Anacystis nidulans.
    Paschinger H
    Z Allg Mikrobiol; 1977; 17(5):373-9. PubMed ID: 412332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen-dependent proton efflux in cyanobacteria (blue-green algae).
    Scherer S; Stürzl E; Böger P
    J Bacteriol; 1984 May; 158(2):609-14. PubMed ID: 6327614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-dependent delta mu Na-generation and utilization in the marine cyanobacterium Oscillatoria brevis.
    Brown II; Fadeyev SI; Kirik II; Severina II; Skulachev VP
    FEBS Lett; 1990 Sep; 270(1-2):203-6. PubMed ID: 2171990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane Proton Electrochemical Gradients in Dark Aerobic and Anaerobic Cells of the Cyanobacterium (Blue-Green Alga) Anacystis nidulans: Evidence for Respiratory Energy Transduction in the Plasma Membrane.
    Peschek GA; Czerny T; Schmetterer G; Nitschmann WH
    Plant Physiol; 1985 Sep; 79(1):278-84. PubMed ID: 16664386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of a Na+-stimulated P-type ATPase in the plasma membrane of the alkaliphilic halotolerant cyanobacterium Aphanothece halophytica.
    Wiangnon K; Raksajit W; Incharoensakdi A
    FEMS Microbiol Lett; 2007 May; 270(1):139-45. PubMed ID: 17302934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans.
    Lee-Kaden J; Simonis W
    J Bacteriol; 1982 Jul; 151(1):229-36. PubMed ID: 6806240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton pump coupled to cytochrome c oxidase in the cyanobacterium Anacystis nidulans.
    Peschek GA
    J Bacteriol; 1983 Jan; 153(1):539-42. PubMed ID: 6294060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-driven Na+ transport and Na(+)-dependent ATP synthesis in Escherichia coli grown at low delta mu H+.
    Avetisyan AV; Bogachev AV; Murtasina RA; Skulachev VP
    FEBS Lett; 1993 Feb; 317(3):267-70. PubMed ID: 8425616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR studies on Na+ transport in Synechococcus PCC 6311.
    Nitschmann WH; Packer L
    Arch Biochem Biophys; 1992 May; 294(2):347-52. PubMed ID: 1314538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic models of coupling between H+ and Na(+)-translocation and ATP synthesis/hydrolysis by F0F1-ATPases: can a cell utilize both delta mu H+ and delta mu Na+ for ATP synthesis under in vivo conditions using the same enzyme?
    Kholodenko BN
    J Bioenerg Biomembr; 1993 Jun; 25(3):285-95. PubMed ID: 8394322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic properties of electrogenic Na+/H+ antiport in membrane vesicles from an alkalophilic Bacillus sp.
    Kitada M; Horikoshi K
    J Bacteriol; 1992 Sep; 174(18):5936-40. PubMed ID: 1325968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological and functional localization of both F-type and P-type ATPases in cyanobacterial plasma membranes.
    Neisser A; Fromwald S; Schmatzberger A; Peschek GA
    Biochem Biophys Res Commun; 1994 Apr; 200(2):884-92. PubMed ID: 8179623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of membrane bioenergetics.
    Wilson TH; Lin EC
    J Supramol Struct; 1980; 13(4):421-46. PubMed ID: 6453255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.