These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 30109056)
1. The leading-edge vortex on a rotating wing changes markedly beyond a certain central body size. Bhat SS; Zhao J; Sheridan J; Hourigan K; Thompson MC R Soc Open Sci; 2018 Jul; 5(7):172197. PubMed ID: 30109056 [TBL] [Abstract][Full Text] [Related]
2. Rotational accelerations stabilize leading edge vortices on revolving fly wings. Lentink D; Dickinson MH J Exp Biol; 2009 Aug; 212(Pt 16):2705-19. PubMed ID: 19648415 [TBL] [Abstract][Full Text] [Related]
3. The leading-edge vortex over a swift-like high-aspect-ratio wing with nonlinear swept-back geometry. Ben-Gida H; Gurka R Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36261048 [TBL] [Abstract][Full Text] [Related]
4. The leading-edge vortex of swift wing-shaped delta wings. Muir RE; Arredondo-Galeana A; Viola IM R Soc Open Sci; 2017 Aug; 4(8):170077. PubMed ID: 28878968 [TBL] [Abstract][Full Text] [Related]
5. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
6. Petiolate wings: effects on the leading-edge vortex in flapping flight. Phillips N; Knowles K; Bomphrey RJ Interface Focus; 2017 Feb; 7(1):20160084. PubMed ID: 28163876 [TBL] [Abstract][Full Text] [Related]
7. Dual leading-edge vortices on flapping wings. Lu Y; Shen GX; Lai GJ J Exp Biol; 2006 Dec; 209(Pt 24):5005-16. PubMed ID: 17142689 [TBL] [Abstract][Full Text] [Related]
8. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight. Lee YJ; Lua KB Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443 [TBL] [Abstract][Full Text] [Related]
9. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651 [TBL] [Abstract][Full Text] [Related]
10. Leading-edge vortices over swept-back wings with varying sweep geometries. Lambert WB; Stanek MJ; Gurka R; Hackett EE R Soc Open Sci; 2019 Jul; 6(7):190514. PubMed ID: 31417749 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing. Lu Y; Shen GX J Exp Biol; 2008 Apr; 211(Pt 8):1221-30. PubMed ID: 18375846 [TBL] [Abstract][Full Text] [Related]
12. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective. Nabawy MRA; Crowther WJ J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395 [TBL] [Abstract][Full Text] [Related]
13. The aerodynamic effects of wing-wing interaction in flapping insect wings. Lehmann FO; Sane SP; Dickinson M J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606 [TBL] [Abstract][Full Text] [Related]
14. The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. Bomphrey RJ; Lawson NJ; Harding NJ; Taylor GK; Thomas AL J Exp Biol; 2005 Mar; 208(Pt 6):1079-94. PubMed ID: 15767309 [TBL] [Abstract][Full Text] [Related]
15. Leading edge vortices in lesser long-nosed bats occurring at slow but not fast flight speeds. Muijres FT; Christoffer Johansson L; Winter Y; Hedenström A Bioinspir Biomim; 2014 Jun; 9(2):025006. PubMed ID: 24855067 [TBL] [Abstract][Full Text] [Related]
16. Stereoscopic particle image velocimetry measurements of the three-dimensional flow field of a descending autorotating mahogany seed (Swietenia macrophylla). Salcedo E; Treviño C; Vargas RO; Martínez-Suástegui L J Exp Biol; 2013 Jun; 216(Pt 11):2017-30. PubMed ID: 23430990 [TBL] [Abstract][Full Text] [Related]
17. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Birch JM; Dickson WB; Dickinson MH J Exp Biol; 2004 Mar; 207(Pt 7):1063-72. PubMed ID: 14978049 [TBL] [Abstract][Full Text] [Related]
18. Multiple leading edge vortices of unexpected strength in freely flying hawkmoth. Johansson LC; Engel S; Kelber A; Heerenbrink MK; Hedenström A Sci Rep; 2013 Nov; 3():3264. PubMed ID: 24253180 [TBL] [Abstract][Full Text] [Related]
19. On the lift-optimal aspect ratio of a revolving wing at low Reynolds number. Jardin T; Colonius T J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29925578 [TBL] [Abstract][Full Text] [Related]
20. Reynolds number dependency of an insect-based flapping wing. Han JS; Chang JW; Kim ST Bioinspir Biomim; 2014; 9(4):046012. PubMed ID: 25381677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]