These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 30109056)
41. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect. Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351 [TBL] [Abstract][Full Text] [Related]
43. Computational investigation of cicada aerodynamics in forward flight. Wan H; Dong H; Gai K J R Soc Interface; 2015 Jan; 12(102):20141116. PubMed ID: 25551136 [TBL] [Abstract][Full Text] [Related]
44. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method. Tay WB; van Oudheusden BW; Bijl H Bioinspir Biomim; 2014 Sep; 9(3):036001. PubMed ID: 24584155 [TBL] [Abstract][Full Text] [Related]
45. Flow structure modifications by leading-edge tubercles on a 3D wing. Kim H; Kim J; Choi H Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460 [TBL] [Abstract][Full Text] [Related]
46. When wings touch wakes: understanding locomotor force control by wake wing interference in insect wings. Lehmann FO J Exp Biol; 2008 Jan; 211(Pt 2):224-33. PubMed ID: 18165250 [TBL] [Abstract][Full Text] [Related]
47. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings. Zhao L; Deng X; Sane SP Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729 [TBL] [Abstract][Full Text] [Related]
49. Leading-edge vortex stability in insect wings. Minotti FO; Speranza E Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051908. PubMed ID: 16089572 [TBL] [Abstract][Full Text] [Related]
50. Experimental Investigation of the Flow Structure over a Delta Wing Via Flow Visualization Methods. Shen L; Chen ZN; Wen C J Vis Exp; 2018 Apr; (134):. PubMed ID: 29733316 [TBL] [Abstract][Full Text] [Related]
51. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing. Winzen A; Roidl B; Schröder W Bioinspir Biomim; 2015 Sep; 10(5):056009. PubMed ID: 26372422 [TBL] [Abstract][Full Text] [Related]
52. Wake structure and wing kinematics: the flight of the lesser dog-faced fruit bat, Cynopterus brachyotis. Hubel TY; Riskin DK; Swartz SM; Breuer KS J Exp Biol; 2010 Oct; 213(Pt 20):3427-40. PubMed ID: 20889823 [TBL] [Abstract][Full Text] [Related]
53. Aerodynamics and flow features of a damselfly in takeoff flight. Bode-Oke AT; Zeyghami S; Dong H Bioinspir Biomim; 2017 Sep; 12(5):056006. PubMed ID: 28699620 [TBL] [Abstract][Full Text] [Related]
56. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
57. AERODYNAMICS, THERMOREGULATION, AND THE EVOLUTION OF INSECT WINGS: DIFFERENTIAL SCALING AND EVOLUTIONARY CHANGE. Kingsolver JG; Koehl MAR Evolution; 1985 May; 39(3):488-504. PubMed ID: 28561970 [TBL] [Abstract][Full Text] [Related]
58. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000. Levy DE; Seifert A J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771 [TBL] [Abstract][Full Text] [Related]
59. Effects of corrugation of the dragonfly wing on gliding performance. Kim WK; Ko JH; Park HC; Byun D J Theor Biol; 2009 Oct; 260(4):523-30. PubMed ID: 19631665 [TBL] [Abstract][Full Text] [Related]
60. Experimental and numerical studies of beetle-inspired flapping wing in hovering flight. Van Truong T; Le TQ; Park HC; Byun D Bioinspir Biomim; 2017 May; 12(3):036012. PubMed ID: 28513472 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]