These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 30109111)
1. Zinc recovery from metallurgical slag and dust by coordination leaching in NH Ma A; Zheng X; Li S; Wang Y; Zhu S R Soc Open Sci; 2018 Jul; 5(7):180660. PubMed ID: 30109111 [TBL] [Abstract][Full Text] [Related]
2. Recovery of Zinc from Metallurgical Slag and Dust by Ammonium Acetate Using Response Surface Methodology. Zheng X; Li J; Ma A; Liu B Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512405 [TBL] [Abstract][Full Text] [Related]
3. Selective recovery of nickel from stainless steel pickling sludge with NH Shi C; Zuo X; Yan B Environ Technol; 2023 Sep; 44(21):3249-3262. PubMed ID: 35319346 [TBL] [Abstract][Full Text] [Related]
4. A Study on the Mechanism and Kinetics of Ultrasound-Enhanced Sulfuric Acid Leaching for Zinc Extraction from Zinc Oxide Dust. Zheng X; Li S; Liu B; Zhang L; Ma A Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079349 [TBL] [Abstract][Full Text] [Related]
5. Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. Leclerc N; Meux E; Lecuire JM J Hazard Mater; 2002 Apr; 91(1-3):257-70. PubMed ID: 11900917 [TBL] [Abstract][Full Text] [Related]
6. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method. Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087 [TBL] [Abstract][Full Text] [Related]
7. Hydrometallurgical extraction of zinc from CaO treated EAF dust in ammonium chloride solution. Miki T; Chairaksa-Fujimoto R; Maruyama K; Nagasaka T J Hazard Mater; 2016 Jan; 302():90-96. PubMed ID: 26448494 [TBL] [Abstract][Full Text] [Related]
8. [Selective recovery of copper, zinc and nickel from printed circuit boards by ammonia leaching under pressure]. Wang M; Cao HB; Zhang Y Huan Jing Ke Xue; 2011 Feb; 32(2):596-602. PubMed ID: 21528589 [TBL] [Abstract][Full Text] [Related]
9. Treatment of copper converter slag with deep eutectic solvent as green chemical. Topçu MA; Rüşen A; Küçük Ö Waste Manag; 2021 Aug; 132():64-73. PubMed ID: 34314950 [TBL] [Abstract][Full Text] [Related]
10. Leaching and selective copper recovery from acidic leachates of Três Marias zinc plant (MG, Brazil) metallurgical purification residues. Sethurajan M; Huguenot D; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED J Environ Manage; 2016 Jul; 177():26-35. PubMed ID: 27074201 [TBL] [Abstract][Full Text] [Related]
11. Calcium carbonate synthesis from Kambara reactor desulphurization slag via indirect carbonation for CO Lin Y; Yan B; Mitas B; Li C; Fabritius T; Shu Q J Environ Manage; 2024 Feb; 351():119773. PubMed ID: 38113789 [TBL] [Abstract][Full Text] [Related]
12. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): part I: Characterization and leaching by diluted sulphuric acid. Oustadakis P; Tsakiridis PE; Katsiapi A; Agatzini-Leonardou S J Hazard Mater; 2010 Jul; 179(1-3):1-7. PubMed ID: 20129730 [TBL] [Abstract][Full Text] [Related]
13. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441 [TBL] [Abstract][Full Text] [Related]
14. Acidic leaching both of zinc and iron from basic oxygen furnace sludge. Trung ZH; Kukurugya F; Takacova Z; Orac D; Laubertova M; Miskufova A; Havlik T J Hazard Mater; 2011 Sep; 192(3):1100-7. PubMed ID: 21724325 [TBL] [Abstract][Full Text] [Related]
15. The recovery of Zn and Pb and the manufacture of lightweight bricks from zinc smelting slag and clay. Hu H; Deng Q; Li C; Xie Y; Dong Z; Zhang W J Hazard Mater; 2014 Apr; 271():220-7. PubMed ID: 24637448 [TBL] [Abstract][Full Text] [Related]
16. Antimony smelting process generating solid wastes and dust: characterization and leaching behaviors. Guo X; Wang K; He M; Liu Z; Yang H; Li S J Environ Sci (China); 2014 Jul; 26(7):1549-56. PubMed ID: 25080005 [TBL] [Abstract][Full Text] [Related]
17. The leaching kinetics of cadmium from hazardous Cu-Cd zinc plant residues. Li M; Zheng S; Liu B; Du H; Dreisinger DB; Tafaghodi L; Zhang Y Waste Manag; 2017 Jul; 65():128-138. PubMed ID: 28392119 [TBL] [Abstract][Full Text] [Related]
18. Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia. Williamson AJ; Verbruggen F; Chavez Rico VS; Bergmans J; Spooren J; Yurramendi L; Laing GD; Boon N; Hennebel T J Hazard Mater; 2021 Feb; 403():123842. PubMed ID: 33264923 [TBL] [Abstract][Full Text] [Related]
19. Recovery of zinc from hyperaccumulator plants: Sedum plumbizincicola. Yang JG; Yang JY; Peng CH; Tang CB; Zhou KC Environ Technol; 2009 Jun; 30(7):693-700. PubMed ID: 19705606 [TBL] [Abstract][Full Text] [Related]
20. Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. Sethurajan M; Huguenot D; Jain R; Lens PN; Horn HA; Figueiredo LH; van Hullebusch ED J Hazard Mater; 2017 Feb; 324(Pt A):71-82. PubMed ID: 26832075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]