These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Minocycline treatment inhibits lipid peroxidation, preserves spinal cord ultrastructure, and improves functional outcome after traumatic spinal cord injury in the rat. Sonmez E; Kabatas S; Ozen O; Karabay G; Turkoglu S; Ogus E; Yilmaz C; Caner H; Altinors N Spine (Phila Pa 1976); 2013 Jul; 38(15):1253-9. PubMed ID: 23370685 [TBL] [Abstract][Full Text] [Related]
23. Use of ebselen as a neuroprotective agent in rat spinal cord subjected to traumatic injury. Slusarczyk W; Olakowska E; Larysz-Brysz M; Woszczycka-Korczyńska I; de Carrillo DG; Węglarz WP; Lewin-Kowalik J; Marcol W Neural Regen Res; 2019 Jul; 14(7):1255-1261. PubMed ID: 30804257 [TBL] [Abstract][Full Text] [Related]
24. Drug delivery to the spinal cord tagged with nanowire enhances neuroprotective efficacy and functional recovery following trauma to the rat spinal cord. Sharma HS; Ali SF; Dong W; Tian ZR; Patnaik R; Patnaik S; Sharma A; Boman A; Lek P; Seifert E; Lundstedt T Ann N Y Acad Sci; 2007 Dec; 1122():197-218. PubMed ID: 18077574 [TBL] [Abstract][Full Text] [Related]
25. Application of natural antioxidants from traditional Chinese medicine in the treatment of spinal cord injury. Huang Z; Wang J; Li C; Zheng W; He J; Wu Z; Tang J Front Pharmacol; 2022; 13():976757. PubMed ID: 36278149 [TBL] [Abstract][Full Text] [Related]
26. The role of thrombospondin-1 and transforming growth factor-beta after spinal cord injury in the rat. Wang X; Chen W; Liu W; Wu J; Shao Y; Zhang X J Clin Neurosci; 2009 Jun; 16(6):818-21. PubMed ID: 19342245 [TBL] [Abstract][Full Text] [Related]
28. Efficacy of riluzole in the treatment of spinal cord injury: a systematic review of the literature. Srinivas S; Wali AR; Pham MH Neurosurg Focus; 2019 Mar; 46(3):E6. PubMed ID: 30835675 [TBL] [Abstract][Full Text] [Related]
29. Neuroprotective effects of safranal in a rat model of traumatic injury to the spinal cord by anti-apoptotic, anti-inflammatory and edema-attenuating. Zhang C; Ma J; Fan L; Zou Y; Dang X; Wang K; Song J Tissue Cell; 2015 Jun; 47(3):291-300. PubMed ID: 25891268 [TBL] [Abstract][Full Text] [Related]
30. Administration of low dose estrogen attenuates gliosis and protects neurons in acute spinal cord injury in rats. Samantaray S; Das A; Matzelle DC; Yu SP; Wei L; Varma A; Ray SK; Banik NL J Neurochem; 2016 Mar; 136(5):1064-73. PubMed ID: 26662641 [TBL] [Abstract][Full Text] [Related]
31. Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury. Chen WF; Chen CH; Chen NF; Sung CS; Wen ZH CNS Neurosci Ther; 2015 Sep; 21(9):698-707. PubMed ID: 26190345 [TBL] [Abstract][Full Text] [Related]
32. Patchouli Alcohol Improves the Integrity of the Blood-Spinal Cord Barrier by Inhibiting Endoplasmic Reticulum Stress Through the Akt/CHOP/Caspase-3 Pathway Following Spinal Cord Injury. Huang C; Zhang W; Chu F; Qian H; Wang Y; Qi F; Ye M; Zhou J; Lin Z; Dong C; Wang X; Wang Q; Jin H Front Cell Dev Biol; 2021; 9():693533. PubMed ID: 34368142 [TBL] [Abstract][Full Text] [Related]
33. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. Kong X; Gao J J Cell Mol Med; 2017 May; 21(5):941-954. PubMed ID: 27957787 [TBL] [Abstract][Full Text] [Related]
34. Delayed administration of high dose human immunoglobulin G enhances recovery after traumatic cervical spinal cord injury by modulation of neuroinflammation and protection of the blood spinal cord barrier. Chio JCT; Wang J; Surendran V; Li L; Zavvarian MM; Pieczonka K; Fehlings MG Neurobiol Dis; 2021 Jan; 148():105187. PubMed ID: 33249350 [TBL] [Abstract][Full Text] [Related]
35. Spinal Cord Injury-Assessing Tolerability and Use of Combined Rehabilitation and NeuroAiD (SATURN Study): Protocol of An Exploratory Study In Assessing the Safety and Efficacy of NeuroAiD Amongst People Who Sustain Severe Spinal Cord Injury. Kumar R; Htwe O; Baharudin A; Ariffin MH; Abdul Rhani S; Ibrahim K; Rustam A; Gan R JMIR Res Protoc; 2016 Dec; 5(4):e230. PubMed ID: 27919862 [TBL] [Abstract][Full Text] [Related]
36. A mechanistic overview of spinal cord injury, oxidative DNA damage repair and neuroprotective therapies. Kaur J; Mojumdar A Int J Neurosci; 2023 Mar; 133(3):307-321. PubMed ID: 33789065 [TBL] [Abstract][Full Text] [Related]
37. Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Nagoshi N; Nakashima H; Fehlings MG Molecules; 2015 Apr; 20(5):7775-89. PubMed ID: 25939067 [TBL] [Abstract][Full Text] [Related]
38. hiPSC-Neural Stem/Progenitor Cell Transplantation Therapy for Spinal Cord Injury. Du X; Amponsah AE; Kong D; He J; Ma Z; Ma J; Cui H Curr Stem Cell Res Ther; 2023; 18(4):487-498. PubMed ID: 35538805 [TBL] [Abstract][Full Text] [Related]
39. In vivo PET imaging of the neuroinflammatory response in rat spinal cord injury using the TSPO tracer [(18)F]GE-180 and effect of docosahexaenoic acid. Tremoleda JL; Thau-Zuchman O; Davies M; Foster J; Khan I; Vadivelu KC; Yip PK; Sosabowski J; Trigg W; Michael-Titus AT Eur J Nucl Med Mol Imaging; 2016 Aug; 43(9):1710-22. PubMed ID: 27154521 [TBL] [Abstract][Full Text] [Related]