These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30109608)

  • 1. Imaging of Transcription and Replication in the Bacterial Chromosome with Multicolor Three-Dimensional Superresolution Structured Illumination Microscopy.
    Martin CM; Cagliero C; Sun Z; Chen D; Jin DJ
    Methods Mol Biol; 2018; 1837():117-129. PubMed ID: 30109608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging of Bacterial Chromosome Organization by 3D Super-Resolution Microscopy.
    Le Gall A; Cattoni DI; Nollmann M
    Methods Mol Biol; 2017; 1624():253-268. PubMed ID: 28842889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial organization of transcription machinery and its segregation from the replisome in fast-growing bacterial cells.
    Cagliero C; Zhou YN; Jin DJ
    Nucleic Acids Res; 2014 Dec; 42(22):13696-705. PubMed ID: 25416798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extrachromosomal Nucleolus-Like Compartmentalization by a Plasmid-Borne Ribosomal RNA Operon and Its Role in Nucleoid Compaction.
    Mata Martin C; Sun Z; Zhou YN; Jin DJ
    Front Microbiol; 2018; 9():1115. PubMed ID: 29922250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleolus-like compartmentalization of the transcription machinery in fast-growing bacterial cells.
    Jin DJ; Mata Martin C; Sun Z; Cagliero C; Zhou YN
    Crit Rev Biochem Mol Biol; 2017 Feb; 52(1):96-106. PubMed ID: 28006965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid.
    Stracy M; Lesterlin C; Garza de Leon F; Uphoff S; Zawadzki P; Kapanidis AN
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):E4390-9. PubMed ID: 26224838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biophysical Properties of Escherichia coli Cytoplasm in Stationary Phase by Superresolution Fluorescence Microscopy.
    Zhu Y; Mustafi M; Weisshaar JC
    mBio; 2020 Jun; 11(3):. PubMed ID: 32546611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structured illumination superresolution imaging of the cytoskeleton.
    Engel U
    Methods Cell Biol; 2014; 123():315-33. PubMed ID: 24974035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excitation-multiplexed multicolor superresolution imaging with fm-STORM and fm-DNA-PAINT.
    Gómez-García PA; Garbacik ET; Otterstrom JJ; Garcia-Parajo MF; Lakadamyali M
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):12991-12996. PubMed ID: 30509979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamic nature and territory of transcriptional machinery in the bacterial chromosome.
    Jin DJ; Cagliero C; Martin CM; Izard J; Zhou YN
    Front Microbiol; 2015; 6():497. PubMed ID: 26052320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy.
    Hajj B; Wisniewski J; El Beheiry M; Chen J; Revyakin A; Wu C; Dahan M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):17480-5. PubMed ID: 25422417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image recombination transform algorithm for superresolution structured illumination microscopy.
    Zhou X; Lei M; Dan D; Yao B; Yang Y; Qian J; Chen G; Bianco PR
    J Biomed Opt; 2016 Sep; 21(9):96009. PubMed ID: 27653935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advancements in structured-illumination microscopy toward live-cell imaging.
    Hirano Y; Matsuda A; Hiraoka Y
    Microscopy (Oxf); 2015 Aug; 64(4):237-49. PubMed ID: 26133185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo and In Situ Replication Labeling Methods for Super-resolution Structured Illumination Microscopy of Chromosome Territories and Chromatin Domains.
    Miron E; Innocent C; Heyde S; Schermelleh L
    Methods Mol Biol; 2016; 1431():127-40. PubMed ID: 27283306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widely accessible method for superresolution fluorescence imaging of living systems.
    Dedecker P; Mo GC; Dertinger T; Zhang J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):10909-14. PubMed ID: 22711840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Answers to fundamental questions in superresolution microscopy.
    Heintzmann R
    Philos Trans A Math Phys Eng Sci; 2021 Jun; 379(2199):20210105. PubMed ID: 33896198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic organization: chromosome domains in Escherichia coli.
    Messerschmidt SJ; Waldminghaus T
    J Mol Microbiol Biotechnol; 2014; 24(5-6):301-15. PubMed ID: 25732334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional Structured Illumination Microscopy (3D-SIM) to Dissect Signaling Cross-Talks in Motile T-Cells.
    Ong ST; Wright GD; Verma NK
    Methods Mol Biol; 2019; 1930():41-50. PubMed ID: 30610597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale imaging by superresolution fluorescence microscopy and its emerging applications in biomedical research.
    Bertocchi C; Goh WI; Zhang Z; Kanchanawong P
    Crit Rev Biomed Eng; 2013; 41(4-5):281-308. PubMed ID: 24941410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization Techniques of Bacteria for Live Super-resolution Imaging Using Structured Illumination Microscopy.
    Bottomley AL; Turnbull L; Whitchurch CB; Harry EJ
    Methods Mol Biol; 2017; 1535():197-209. PubMed ID: 27914080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.