These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30109617)

  • 1. Unraveling the Biophysical Properties of Chromatin Proteins and DNA Using Acoustic Force Spectroscopy.
    Lin SN; Qin L; Wuite GJL; Dame RT
    Methods Mol Biol; 2018; 1837():301-316. PubMed ID: 30109617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the Biophysical Properties of Chromatin Proteins and DNA Using Acoustic Force Spectroscopy.
    Lin SN; Qin L; Taris KH; Wuite GJL; Dame RT
    Methods Mol Biol; 2024; 2819():519-534. PubMed ID: 39028522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Measurements Using Acoustic Force Spectroscopy (AFS).
    Kamsma D; Wuite GJL
    Methods Mol Biol; 2018; 1665():341-351. PubMed ID: 28940078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic force spectroscopy.
    Sitters G; Kamsma D; Thalhammer G; Ritsch-Marte M; Peterman EJ; Wuite GJ
    Nat Methods; 2015 Jan; 12(1):47-50. PubMed ID: 25419961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Cell Measurements Using Acoustic Force Spectroscopy (AFS).
    Taris KH; Kamsma D; Wuite GJL
    Methods Mol Biol; 2024; 2694():467-477. PubMed ID: 37824018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sounding a New Era in Biomechanics with Acoustic Force Spectroscopy.
    Silvani G; Romanov V; Martinac B
    Adv Exp Med Biol; 2023; 1436():109-118. PubMed ID: 36571699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling DNA Organization with Single-Molecule Force Spectroscopy Using Magnetic Tweezers.
    Brouwer TB; Kaczmarczyk A; Pham C; van Noort J
    Methods Mol Biol; 2018; 1837():317-349. PubMed ID: 30109618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to Quantify DNA Compaction by TFAM with Acoustic Force Spectroscopy and Total Internal Reflection Fluorescence Microscopy.
    Martucci M; Debar L; van den Wildenberg S; Farge G
    Methods Mol Biol; 2023; 2615():121-137. PubMed ID: 36807789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers.
    Meng H; Andresen K; van Noort J
    Nucleic Acids Res; 2015 Apr; 43(7):3578-90. PubMed ID: 25779043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tethered Particle Motion Analysis of the DNA Binding Properties of Architectural Proteins.
    van der Valk RA; Laurens N; Dame RT
    Methods Mol Biol; 2017; 1624():127-143. PubMed ID: 28842881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining DNA scaffolds and acoustic force spectroscopy to characterize individual protein bonds.
    Wang YJ; Valotteau C; Aimard A; Villanueva L; Kostrz D; Follenfant M; Strick T; Chames P; Rico F; Gosse C; Limozin L
    Biophys J; 2023 Jun; 122(12):2518-2530. PubMed ID: 37290437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning the Music: Acoustic Force Spectroscopy (AFS) 2.0.
    Kamsma D; Creyghton R; Sitters G; Wuite GJ; Peterman EJ
    Methods; 2016 Aug; 105():26-33. PubMed ID: 27163865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of DNA interactions using single-molecule force spectroscopy.
    Ritzefeld M; Walhorn V; Anselmetti D; Sewald N
    Amino Acids; 2013 Jun; 44(6):1457-75. PubMed ID: 23468137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment.
    Noy A
    Curr Opin Chem Biol; 2011 Oct; 15(5):710-8. PubMed ID: 21862386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-ligand binding and the force-extension experiments. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by Chaurasiya et al.
    Vologodskii A
    Phys Life Rev; 2010 Sep; 7(3):346-7; discussion 358-61. PubMed ID: 20621571
    [No Abstract]   [Full Text] [Related]  

  • 16. Biophysical characterization of the DNA interaction with the biogenic polyamine putrescine: A single molecule study.
    Publio BC; Moura TA; Lima CHM; Rocha MS
    Int J Biol Macromol; 2018 Jun; 112():175-178. PubMed ID: 29414728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discriminating Intercalative Effects of Threading Intercalator Nogalamycin, from Classical Intercalator Daunomycin, Using Single Molecule Atomic Force Spectroscopy.
    Banerjee T; Banerjee S; Sett S; Ghosh S; Rakshit T; Mukhopadhyay R
    PLoS One; 2016; 11(5):e0154666. PubMed ID: 27183010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of Surface-tethered Large DNA Molecules with a Fluorescent Protein DNA Binding Peptide.
    Lee S; Jo K
    J Vis Exp; 2016 Jun; (112):. PubMed ID: 27403566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid-driven DNA stretching for single-molecule studies on chromatin-associated proteins.
    Heo W; Seo J; Lee Y; Kim Y
    Biochem Biophys Res Commun; 2022 Dec; 634():122-128. PubMed ID: 36242918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level.
    Zlatanova J; Leuba SH
    Biochem Cell Biol; 2003 Jun; 81(3):151-9. PubMed ID: 12897848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.