These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30109620)

  • 1. Deciphering 3D Organization of Chromosomes Using Hi-C Data.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():389-401. PubMed ID: 30109620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the 3D Genome Organization of Bacteria Using Hi-C.
    Crémazy FG; Rashid FM; Haycocks JR; Lamberte LE; Grainger DC; Dame RT
    Methods Mol Biol; 2018; 1837():3-18. PubMed ID: 30109602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing and Analysis of Hi-C Data on Bacteria.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():19-31. PubMed ID: 30109603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A (3D-Nuclear) Space Odyssey: Making Sense of Hi-C Maps.
    Mota-Gómez I; Lupiáñez DG
    Genes (Basel); 2019 May; 10(6):. PubMed ID: 31146487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of computational methods for Hi-C data analysis.
    Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S
    Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of 3D genome architecture via a two-stage algorithm.
    Segal MR; Bengtsson HL
    BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes.
    Abbas A; He X; Niu J; Zhou B; Zhu G; Ma T; Song J; Gao J; Zhang MQ; Zeng J
    Nat Commun; 2019 May; 10(1):2049. PubMed ID: 31053705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin 3D structure reconstruction with consideration of adjacency relationship among genomic loci.
    Li FZ; Liu ZE; Li XY; Bu LM; Bu HX; Liu H; Zhang CM
    BMC Bioinformatics; 2020 Jul; 21(1):272. PubMed ID: 32611376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Genome Reconstruction with ShRec3D+ and Hi-C Data.
    Li J; Zhang W; Li X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(2):460-468. PubMed ID: 26955049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data.
    Oluwadare O; Zhang Y; Cheng J
    BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data.
    Meluzzi D; Arya G
    Methods; 2020 Oct; 181-182():24-34. PubMed ID: 31470090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring Spatial Organization of Individual Topologically Associated Domains via Piecewise Helical Model.
    Zhang R; Hu M; Zhu Y; Qin Z; Deng K; Liu JS
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(2):647-656. PubMed ID: 30113897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstructing spatial organizations of chromosomes through manifold learning.
    Zhu G; Deng W; Hu H; Ma R; Zhang S; Yang J; Peng J; Kaplan T; Zeng J
    Nucleic Acids Res; 2018 May; 46(8):e50. PubMed ID: 29408992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ChromeBat: A Bio-Inspired Approach to 3D Genome Reconstruction.
    Collins B; Oluwadare O; Brown P
    Genes (Basel); 2021 Nov; 12(11):. PubMed ID: 34828363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.
    Irastorza-Azcarate I; Acemel RD; Tena JJ; Maeso I; Gómez-Skarmeta JL; Devos DP
    PLoS Comput Biol; 2018 Mar; 14(3):e1006030. PubMed ID: 29522512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DLO Hi-C Tool for Digestion-Ligation-Only Hi-C Chromosome Conformation Capture Data Analysis.
    Hong P; Jiang H; Xu W; Lin D; Xu Q; Cao G; Li G
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32164155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHi-C: deciphering Hi-C data into polymer dynamics.
    Shinkai S; Nakagawa M; Sugawara T; Togashi Y; Ochiai H; Nakato R; Taniguchi Y; Onami S
    NAR Genom Bioinform; 2020 Jun; 2(2):lqaa020. PubMed ID: 33575580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hi-C: a method to study the three-dimensional architecture of genomes.
    van Berkum NL; Lieberman-Aiden E; Williams L; Imakaev M; Gnirke A; Mirny LA; Dekker J; Lander ES
    J Vis Exp; 2010 May; (39):. PubMed ID: 20461051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.