These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 30109620)

  • 21. Analysis methods for studying the 3D architecture of the genome.
    Ay F; Noble WS
    Genome Biol; 2015 Sep; 16():183. PubMed ID: 26328929
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of High-Resolution 3D Chromatin Organization Using Circular Chromosome Conformation Capture (4C-seq).
    Matelot M; Noordermeer D
    Methods Mol Biol; 2016; 1480():223-41. PubMed ID: 27659989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inference of chromosome 3D structures from GAM data by a physics computational approach.
    Fiorillo L; Bianco S; Chiariello AM; Barbieri M; Esposito A; Annunziatella C; Conte M; Corrado A; Prisco A; Pombo A; Nicodemi M
    Methods; 2020 Oct; 181-182():70-79. PubMed ID: 31604121
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three invariant Hi-C interaction patterns: Applications to genome assembly.
    Oddes S; Zelig A; Kaplan N
    Methods; 2018 Jun; 142():89-99. PubMed ID: 29684640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring chromosome radial organization from Hi-C data.
    Das P; Shen T; McCord RP
    BMC Bioinformatics; 2020 Nov; 21(1):511. PubMed ID: 33167851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A unified framework for inferring the multi-scale organization of chromatin domains from Hi-C.
    Bak JH; Kim MH; Liu L; Hyeon C
    PLoS Comput Biol; 2021 Mar; 17(3):e1008834. PubMed ID: 33724986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Hitchhiker's guide to Hi-C analysis: practical guidelines.
    Lajoie BR; Dekker J; Kaplan N
    Methods; 2015 Jan; 72():65-75. PubMed ID: 25448293
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles.
    Miura H; Poonperm R; Takahashi S; Hiratani I
    Methods Mol Biol; 2018; 1861():221-245. PubMed ID: 30218370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational 3D genome modeling using Chrom3D.
    Paulsen J; Liyakat Ali TM; Collas P
    Nat Protoc; 2018 May; 13(5):1137-1152. PubMed ID: 29700484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The era of 3D and spatial genomics.
    Bouwman BAM; Crosetto N; Bienko M
    Trends Genet; 2022 Oct; 38(10):1062-1075. PubMed ID: 35680466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Understanding 3D genome organization by multidisciplinary methods.
    Jerkovic I; Cavalli G
    Nat Rev Mol Cell Biol; 2021 Aug; 22(8):511-528. PubMed ID: 33953379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromosome conformation capture technologies and their impact in understanding genome function.
    Sati S; Cavalli G
    Chromosoma; 2017 Feb; 126(1):33-44. PubMed ID: 27130552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient Hi-C inversion facilitates chromatin folding mechanism discovery and structure prediction.
    Schuette G; Ding X; Zhang B
    Biophys J; 2023 Sep; 122(17):3425-3438. PubMed ID: 37496267
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GenomeFlow: a comprehensive graphical tool for modeling and analyzing 3D genome structure.
    Trieu T; Oluwadare O; Wopata J; Cheng J
    Bioinformatics; 2019 Apr; 35(8):1416-1418. PubMed ID: 30215673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Massively multiplex single-cell Hi-C.
    Ramani V; Deng X; Qiu R; Gunderson KL; Steemers FJ; Disteche CM; Noble WS; Duan Z; Shendure J
    Nat Methods; 2017 Mar; 14(3):263-266. PubMed ID: 28135255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of Hi-C Data for Discovery of Structural Variations in Cancer.
    Song F; Xu J; Dixon J; Yue F
    Methods Mol Biol; 2022; 2301():143-161. PubMed ID: 34415534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues.
    Wang J; Lu L; Zheng S; Wang D; Jin L; Zhang Q; Li M; Zhang Z
    Adv Sci (Weinh); 2023 Sep; 10(27):e2301058. PubMed ID: 37515382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A statistical model of intra-chromosome contact maps.
    Nazarov LI; Tamm MV; Avetisov VA; Nechaev SK
    Soft Matter; 2015 Feb; 11(5):1019-25. PubMed ID: 25521815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.