These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30109663)

  • 1. Chemoenzymatic Synthesis of Nitrogen Polymers with Biomedical Applications Catalyzed by Lipases.
    Baldessari A; Liñares GG
    Methods Mol Biol; 2018; 1835():359-376. PubMed ID: 30109663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilized Candida antarctica lipase B catalyzed synthesis of biodegradable polymers for biomedical applications.
    Lu Y; Lv Q; Liu B; Liu J
    Biomater Sci; 2019 Nov; 7(12):4963-4983. PubMed ID: 31532401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipase-catalyzed synthesis of poly(amine-co-esters) via copolymerization of diester with amino-substituted diol.
    Jiang Z
    Biomacromolecules; 2010 Apr; 11(4):1089-93. PubMed ID: 20205448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide.
    Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T
    Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Developments and Optimization of Lipase-Catalyzed Lactone Formation and Ring-Opening Polymerization.
    Champagne E; Strandman S; Zhu XX
    Macromol Rapid Commun; 2016 Dec; 37(24):1986-2004. PubMed ID: 27805747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved synthesis strategy of poly(amidoamine)s for biomedical applications: catalysis by "green" biocompatible earth alkaline metal salts.
    Zintchenko A; van der Aa LJ; Engbersen JF
    Macromol Rapid Commun; 2011 Feb; 32(3):321-5. PubMed ID: 21433178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of biodegradable polymers using biocatalysis with Yarrowia lipolytica lipase.
    Barrera-Rivera KA; Flores-Carreón A; Martínez-Richa A
    Methods Mol Biol; 2012; 861():485-93. PubMed ID: 22426736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipases in polymer chemistry.
    Yeniad B; Naik H; Heise A
    Adv Biochem Eng Biotechnol; 2011; 125():69-95. PubMed ID: 20859733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase-catalyzed ring-opening copolymerization of ε-caprolactone and β-lactam.
    Stavila E; Alberda van Ekenstein GO; Woortman AJ; Loos K
    Biomacromolecules; 2014 Jan; 15(1):234-41. PubMed ID: 24294825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-Pot Synthesis of Multifunctional Polymers by Light-Controlled Radical Polymerization and Enzymatic Catalysis with Candida antarctica Lipase B.
    Hrsic E; Keul H; Möller M
    Macromol Rapid Commun; 2015 Dec; 36(23):2092-6. PubMed ID: 24014135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic fabrication of fast-degradable, water-soluble polycarbonate functionalized with tertiary amine groups in backbone.
    Wang HF; Su W; Zhang C; Luo XH; Feng J
    Biomacromolecules; 2010 Oct; 11(10):2550-7. PubMed ID: 20836520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification.
    Takwa M; Xiao Y; Simpson N; Malmström E; Hult K; Koning CE; Heise A; Martinelle M
    Biomacromolecules; 2008 Feb; 9(2):704-10. PubMed ID: 18198845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of aliphatic poly(thioester) by the lipase-catalyzed direct polycondensation of 11-mercaptoundecanoic acid.
    Kato M; Toshima K; Matsumura S
    Biomacromolecules; 2005; 6(4):2275-80. PubMed ID: 16004472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme-catalyzed degradation of biodegradable polymers derived from trimethylene carbonate and glycolide by lipases from Candida antarctica and Hog pancreas.
    Liu F; Yang J; Fan Z; Li S; Kasperczyk J; Dobrzynski P
    J Biomater Sci Polym Ed; 2012; 23(10):1355-68. PubMed ID: 21722422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic transformation of bacterial polyhydroxyalkanoates into repolymerizable oligomers directed towards chemical recycling.
    Kaihara S; Osanai Y; Nishikawa K; Toshima K; Doi Y; Matsumura S
    Macromol Biosci; 2005 Jul; 5(7):644-52. PubMed ID: 15988790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novozym 435-Catalyzed Synthesis of Well-Defined Hyperbranched Aliphatic Poly(β-thioether ester).
    Wu WX; Liu Z
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32041136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase-catalyzed degradation of polyesters in organic solvents. A new methodology of polymer recycling using enzyme as catalyst.
    Kobayashi S; Uyama H; Takamoto T
    Biomacromolecules; 2000; 1(1):3-5. PubMed ID: 11709839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasound assisted lipase catalyzed synthesis of poly-6-hydroxyhexanoate.
    Gumel AM; Annuar MS; Chisti Y; Heidelberg T
    Ultrason Sonochem; 2012 May; 19(3):659-67. PubMed ID: 22105013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.
    Dai S; Li Z
    Biomacromolecules; 2008 Jul; 9(7):1883-93. PubMed ID: 18540675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.