These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 30109992)

  • 21. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.
    Luo L; Holden DA; White HS
    ACS Nano; 2014 Mar; 8(3):3023-30. PubMed ID: 24588582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.
    Matejczyk B; Valiskó M; Wolfram MT; Pietschmann JF; Boda D
    J Chem Phys; 2017 Mar; 146(12):124125. PubMed ID: 28388126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymer translocation through an electrically tunable nanopore in a multilayered semiconductor membrane.
    Melnikov DV; Nikolaev A; Leburton JP; Gracheva ME
    Methods Mol Biol; 2012; 870():187-207. PubMed ID: 22528265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Streaming current magnetic fields in a charged nanopore.
    Mansouri A; Taheri P; Kostiuk LW
    Sci Rep; 2016 Nov; 6():36771. PubMed ID: 27833119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of linear surface-charge non-uniformities on the electrokinetic ionic-current rectification in conical nanopores.
    Qian S; Joo SW; Ai Y; Cheney MA; Hou W
    J Colloid Interface Sci; 2009 Jan; 329(2):376-83. PubMed ID: 18977486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slowing down DNA translocation through a nanopore by lowering fluid temperature.
    Yeh LH; Zhang M; Joo SW; Qian S
    Electrophoresis; 2012 Dec; 33(23):3458-65. PubMed ID: 23124983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of tunable nanopore blockade rates to investigate colloidal dispersions.
    Willmott GR; Vogel R; Yu SS; Groenewegen LG; Roberts GS; Kozak D; Anderson W; Trau M
    J Phys Condens Matter; 2010 Nov; 22(45):454116. PubMed ID: 21339603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lattice-Boltzmann Simulations of Ionic Current Modulation by DNA Translocation.
    Reboux S; Capuani F; Frenkel D
    J Chem Theory Comput; 2006 May; 2(3):495-503. PubMed ID: 26626660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direction- and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores.
    Chen K; Bell NAW; Kong J; Tian Y; Keyser UF
    Biophys J; 2017 Feb; 112(4):674-682. PubMed ID: 28256227
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of single nanoparticle-nanopore interaction strength on ionic current modulation.
    Pal S; Ramkumar B; Jugade S; Rao A; Naik A; Chakraborty B; Varma MM
    Sens Actuators B Chem; 2020 Dec; 325():. PubMed ID: 34321714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of electroosmotic flow on the ionic current rectification in a pH-regulated, conical nanopore.
    Lin DH; Lin CY; Tseng S; Hsu JP
    Nanoscale; 2015 Sep; 7(33):14023-31. PubMed ID: 26239192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling electrokinetics in ionic liquids.
    Wang C; Bao J; Pan W; Sun X
    Electrophoresis; 2017 Jul; 38(13-14):1693-1705. PubMed ID: 28314048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.
    Shankla M; Aksimentiev A
    J Phys Chem B; 2017 Apr; 121(15):3724-3733. PubMed ID: 28009170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combining dynamic Monte Carlo with machine learning to study nanoparticle translocation.
    Vieira LF; Weinhofer AC; Oltjen WC; Yu C; de Souza Mendes PR; Hore MJA
    Soft Matter; 2022 Jul; 18(28):5218-5229. PubMed ID: 35770621
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic selectivity of single nanochannels.
    Vlassiouk I; Smirnov S; Siwy Z
    Nano Lett; 2008 Jul; 8(7):1978-85. PubMed ID: 18558784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing access resistance of solid-state nanopores with a scanning-probe microscope tip.
    Hyun C; Rollings R; Li J
    Small; 2012 Feb; 8(3):384-92. PubMed ID: 22287084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pressure-dependent ion current rectification in conical-shaped glass nanopores.
    Lan WJ; Holden DA; White HS
    J Am Chem Soc; 2011 Aug; 133(34):13300-3. PubMed ID: 21800889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial blockage of ionic current for electrophoretic translocation of DNA through a graphene nanopore.
    Lv W; Liu S; Li X; Wu R
    Electrophoresis; 2014 Apr; 35(8):1144-51. PubMed ID: 24459097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An inverse averaging finite element method for solving three-dimensional Poisson-Nernst-Planck equations in nanopore system simulations.
    Zhang Q; Wang Q; Zhang L; Lu B
    J Chem Phys; 2021 Nov; 155(19):194106. PubMed ID: 34800956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulating DNA translocation through functionalized soft nanopores.
    Yeh LH; Zhang M; Qian S; Hsu JP
    Nanoscale; 2012 Apr; 4(8):2685-93. PubMed ID: 22422141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.