These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 3011003)

  • 21. Life with CO or CO2 and H2 as a source of carbon and energy.
    Wood HG
    FASEB J; 1991 Feb; 5(2):156-63. PubMed ID: 1900793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Re-examination of the metabolic potentials of the acetogens Clostridium aceticum and Clostridium formicoaceticum: chemolithoautotrophic and aromatic-dependent growth.
    Lux MF; Drake HL
    FEMS Microbiol Lett; 1992 Aug; 74(1):49-56. PubMed ID: 1516807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Utilization of carbon monoxide by bacteria of the genus Desulfovibrio].
    Mukhitova FK; Riantseva IN; Karpilova IIu; Beliaeva MI
    Izv Akad Nauk SSSR Biol; 1983; (6):944-8. PubMed ID: 6418781
    [No Abstract]   [Full Text] [Related]  

  • 24. Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of
    Song Y; Lee JS; Shin J; Lee GM; Jin S; Kang S; Lee JK; Kim DR; Lee EY; Kim SC; Cho S; Kim D; Cho BK
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7516-7523. PubMed ID: 32170009
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps of the synthesis.
    Ragsdale SW; Wood HG
    J Biol Chem; 1985 Apr; 260(7):3970-7. PubMed ID: 2984190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum.
    Mayer A; Weuster-Botz D
    FEMS Microbiol Lett; 2017 Dec; 364(22):. PubMed ID: 29069379
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enzymology of the acetyl-CoA pathway of CO2 fixation.
    Ragsdale SW
    Crit Rev Biochem Mol Biol; 1991; 26(3-4):261-300. PubMed ID: 1935170
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass.
    Navarro RM; Peña MA; Fierro JL
    Chem Rev; 2007 Oct; 107(10):3952-91. PubMed ID: 17715983
    [No Abstract]   [Full Text] [Related]  

  • 29. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The extended reductive acetyl-CoA pathway: ATPases in metal cluster maturation and reductive activation.
    Jeoung JH; Goetzl S; Hennig SE; Fesseler J; Wörmann C; Dendra J; Dobbek H
    Biol Chem; 2014 May; 395(5):545-58. PubMed ID: 24477517
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolism of homocetogens.
    Diekert G; Wohlfarth G
    Antonie Van Leeuwenhoek; 1994; 66(1-3):209-21. PubMed ID: 7747932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Maintenance of ATP Homeostasis Triggers Metabolic Shifts in Gas-Fermenting Acetogens.
    Valgepea K; de Souza Pinto Lemgruber R; Meaghan K; Palfreyman RW; Abdalla T; Heijstra BD; Behrendorff JB; Tappel R; Köpke M; Simpson SD; Nielsen LK; Marcellin E
    Cell Syst; 2017 May; 4(5):505-515.e5. PubMed ID: 28527885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway.
    Furdui C; Ragsdale SW
    J Biol Chem; 2000 Sep; 275(37):28494-9. PubMed ID: 10878009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Agr Quorum Sensing influences the Wood-Ljungdahl pathway in Clostridium autoethanogenum.
    Piatek P; Humphreys C; Raut MP; Wright PC; Simpson S; Köpke M; Minton NP; Winzer K
    Sci Rep; 2022 Jan; 12(1):411. PubMed ID: 35013405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation.
    Emerson DF; Woolston BM; Liu N; Donnelly M; Currie DH; Stephanopoulos G
    Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell growth and P(3HB) accumulation from CO2 of a carbon monoxide-tolerant hydrogen-oxidizing bacterium, Ideonella sp. O-1.
    Tanaka K; Miyawaki K; Yamaguchi A; Khosravi-Darani K; Matsusaki H
    Appl Microbiol Biotechnol; 2011 Dec; 92(6):1161-9. PubMed ID: 21695533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deciphering Clostridium metabolism and its responses to bioreactor mass transfer during syngas fermentation.
    Wan N; Sathish A; You L; Tang YJ; Wen Z
    Sci Rep; 2017 Aug; 7(1):10090. PubMed ID: 28855713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon monoxide fixation into the carboxyl group of acetyl coenzyme A during autotrophic growth of Methanobacterium.
    Stupperich E; Hammel KE; Fuchs G; Thauer RK
    FEBS Lett; 1983 Feb; 152(1):21-3. PubMed ID: 6840273
    [No Abstract]   [Full Text] [Related]  

  • 40. [Growth of hydrogen bacteria inhibited by carbon monoxide].
    Volova TG; Kalacheva GS; Stasishina GN; Kasaeva GE
    Mikrobiologiia; 1980; 49(4):465-71. PubMed ID: 7412612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.