BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30110034)

  • 1. Microfluidic-based vascularized microphysiological systems.
    Lee S; Ko J; Park D; Lee SR; Chung M; Lee Y; Jeon NL
    Lab Chip; 2018 Sep; 18(18):2686-2709. PubMed ID: 30110034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opportunities and challenges in the wider adoption of liver and interconnected microphysiological systems.
    Hughes DJ; Kostrzewski T; Sceats EL
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1593-1604. PubMed ID: 28504617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human in vitro vascularized micro-organ and micro-tumor models are reproducible organ-on-a-chip platforms for studies of anticancer drugs.
    Liu Y; Sakolish C; Chen Z; Phan DTT; Bender RHF; Hughes CCW; Rusyn I
    Toxicology; 2020 Dec; 445():152601. PubMed ID: 32980478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development.
    Marx U; Akabane T; Andersson TB; Baker E; Beilmann M; Beken S; Brendler-Schwaab S; Cirit M; David R; Dehne EM; Durieux I; Ewart L; Fitzpatrick SC; Frey O; Fuchs F; Griffith LG; Hamilton GA; Hartung T; Hoeng J; Hogberg H; Hughes DJ; Ingber DE; Iskandar A; Kanamori T; Kojima H; Kuehnl J; Leist M; Li B; Loskill P; Mendrick DL; Neumann T; Pallocca G; Rusyn I; Smirnova L; Steger-Hartmann T; Tagle DA; Tonevitsky A; Tsyb S; Trapecar M; Van de Water B; Van den Eijnden-van Raaij J; Vulto P; Watanabe K; Wolf A; Zhou X; Roth A
    ALTEX; 2020; 37(3):365-394. PubMed ID: 32113184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Vascularized Organoid-on-a-Chip Models.
    Shirure VS; Hughes CCW; George SC
    Annu Rev Biomed Eng; 2021 Jul; 23():141-167. PubMed ID: 33756087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ-on-a-chip technology for the study of the female reproductive system.
    Young RE; Huh DD
    Adv Drug Deliv Rev; 2021 Jun; 173():461-478. PubMed ID: 33831478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic technologies for vasculature biomimicry.
    Hu C; Chen Y; Tan MJA; Ren K; Wu H
    Analyst; 2019 Jul; 144(15):4461-4471. PubMed ID: 31162494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Edifice of Vasculature-On-Chips: A Focused Review on the Key Elements and Assembly of Angiogenesis Models.
    Lim J; Fang HW; Bupphathong S; Sung PC; Yeh CE; Huang W; Lin CH
    ACS Biomater Sci Eng; 2024 Jun; 10(6):3548-3567. PubMed ID: 38712543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-contained, low-cost Body-on-a-Chip systems for drug development.
    Wang YI; Oleaga C; Long CJ; Esch MB; McAleer CW; Miller PG; Hickman JJ; Shuler ML
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1701-1713. PubMed ID: 29065797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New horizons of microphysiological systems: India forging its path in human-relevant research.
    Parvatam S; Mahadik K; Banerjee A; Patil K; Radha V; Rao M
    Biol Open; 2023 Apr; 12(4):. PubMed ID: 37070566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microphysiological Systems: Design, Fabrication, and Applications.
    Wang K; Man K; Liu J; Liu Y; Chen Q; Zhou Y; Yang Y
    ACS Biomater Sci Eng; 2020 Jun; 6(6):3231-3257. PubMed ID: 33204830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microphysiological Systems: Stakeholder Challenges to Adoption in Drug Development.
    Hargrove-Grimes P; Low LA; Tagle DA
    Cells Tissues Organs; 2022; 211(3):269-281. PubMed ID: 34380142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human Ocular Angiogenesis-Inspired Vascular Models on an Injection-Molded Microfluidic Chip.
    Ko J; Lee Y; Lee S; Lee SR; Jeon NL
    Adv Healthc Mater; 2019 Aug; 8(15):e1900328. PubMed ID: 31199057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip.
    Anderson WA; Bosak A; Hogberg HT; Hartung T; Moore MJ
    In Vitro Cell Dev Biol Anim; 2021 Feb; 57(2):191-206. PubMed ID: 33438114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacokinetics-On-a-Chip: In Vitro Microphysiological Models for Emulating of Drugs ADME.
    Ramadan Q; Fardous RS; Hazaymeh R; Alshmmari S; Zourob M
    Adv Biol (Weinh); 2021 Sep; 5(9):e2100775. PubMed ID: 34323392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Academic User View: Organ-on-a-Chip Technology.
    Busek M; Aizenshtadt A; Amirola-Martinez M; Delon L; Krauss S
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces.
    Kavand H; Nasiri R; Herland A
    Adv Mater; 2022 Apr; 34(17):e2107876. PubMed ID: 34913206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D vascularized microphysiological system for investigation of tumor-endothelial crosstalk in anti-cancer drug resistance.
    Kim S; Park J; Ho JN; Kim D; Lee S; Jeon JS
    Biofabrication; 2023 Aug; 15(4):. PubMed ID: 37567223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms.
    Wang X; Phan DTT; Zhao D; George SC; Hughes CCW; Lee AP
    Lab Chip; 2016 Mar; 16(5):868-876. PubMed ID: 26879519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro.
    Moses SR; Adorno JJ; Palmer AF; Song JW
    Am J Physiol Cell Physiol; 2021 Jan; 320(1):C92-C105. PubMed ID: 33176110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.