BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 30110221)

  • 1. Retrospective Validation and Clinical Implementation of Automated Contouring of Organs at Risk in the Head and Neck: A Step Toward Automated Radiation Treatment Planning for Low- and Middle-Income Countries.
    McCarroll RE; Beadle BM; Balter PA; Burger H; Cardenas CE; Dalvie S; Followill DS; Kisling KD; Mejia M; Naidoo K; Nelson CL; Peterson CB; Vorster K; Wetter J; Zhang L; Court LE; Yang J
    J Glob Oncol; 2018 Jul; 4():1-11. PubMed ID: 30110221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A clinical and time savings evaluation of a deep learning automatic contouring algorithm.
    Ginn JS; Gay HA; Hilliard J; Shah J; Mistry N; Möhler C; Hugo GD; Hao Y
    Med Dosim; 2023 Spring; 48(1):55-60. PubMed ID: 36550000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring.
    van Dijk LV; Van den Bosch L; Aljabar P; Peressutti D; Both S; J H M Steenbakkers R; Langendijk JA; Gooding MJ; Brouwer CL
    Radiother Oncol; 2020 Jan; 142():115-123. PubMed ID: 31653573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of software-assisted contour propagation from planning CT to cone beam CT in head and neck radiotherapy.
    Hvid CA; Elstrøm UV; Jensen K; Alber M; Grau C
    Acta Oncol; 2016 Nov; 55(11):1324-1330. PubMed ID: 27556786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic detection of contouring errors using convolutional neural networks.
    Rhee DJ; Cardenas CE; Elhalawani H; McCarroll R; Zhang L; Yang J; Garden AS; Peterson CB; Beadle BM; Court LE
    Med Phys; 2019 Nov; 46(11):5086-5097. PubMed ID: 31505046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-institutional quantitative evaluation and clinical validation of Smart Probabilistic Image Contouring Engine (SPICE) autosegmentation of target structures and normal tissues on computer tomography images in the head and neck, thorax, liver, and male pelvis areas.
    Zhu M; Bzdusek K; Brink C; Eriksen JG; Hansen O; Jensen HA; Gay HA; Thorstad W; Widder J; Brouwer CL; Steenbakkers RJ; Vanhauten HA; Cao JQ; McBrayne G; Patel SH; Cannon DM; Hardcastle N; Tomé WA; Guckenberg M; Parikh PJ
    Int J Radiat Oncol Biol Phys; 2013 Nov; 87(4):809-16. PubMed ID: 24138920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.
    Kumarasiri A; Siddiqui F; Liu C; Yechieli R; Shah M; Pradhan D; Zhong H; Chetty IJ; Kim J
    Med Phys; 2014 Dec; 41(12):121712. PubMed ID: 25471959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating High-Quality Lymph Node Clinical Target Volumes for Head and Neck Cancer Radiation Therapy Using a Fully Automated Deep Learning-Based Approach.
    Cardenas CE; Beadle BM; Garden AS; Skinner HD; Yang J; Rhee DJ; McCarroll RE; Netherton TJ; Gay SS; Zhang L; Court LE
    Int J Radiat Oncol Biol Phys; 2021 Mar; 109(3):801-812. PubMed ID: 33068690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is accurate contouring of salivary and swallowing structures necessary to spare them in head and neck VMAT plans?
    Delaney AR; Dahele M; Slotman BJ; Verbakel WFAR
    Radiother Oncol; 2018 May; 127(2):190-196. PubMed ID: 29605479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.
    Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S
    Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial Evaluation of a Novel Cone-Beam CT-Based Semi-Automated Online Adaptive Radiotherapy System for Head and Neck Cancer Treatment - A Timing and Automation Quality Study.
    Yoon SW; Lin H; Alonso-Basanta M; Anderson N; Apinorasethkul O; Cooper K; Dong L; Kempsey B; Marcel J; Metz J; Scheuermann R; Li T
    Cureus; 2020 Aug; 12(8):e9660. PubMed ID: 32923257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of autocontouring in clinical practice: A practical method using the Turing test.
    Gooding MJ; Smith AJ; Tariq M; Aljabar P; Peressutti D; van der Stoep J; Reymen B; Emans D; Hattu D; van Loon J; de Rooy M; Wanders R; Peeters S; Lustberg T; van Soest J; Dekker A; van Elmpt W
    Med Phys; 2018 Nov; 45(11):5105-5115. PubMed ID: 30229951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical assessment of a novel machine-learning automated contouring tool for radiotherapy planning.
    Hu Y; Nguyen H; Smith C; Chen T; Byrne M; Archibald-Heeren B; Rijken J; Aland T
    J Appl Clin Med Phys; 2023 Jul; 24(7):e13949. PubMed ID: 36871161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence-Based Radiotherapy Contouring and Planning to Improve Global Access to Cancer Care.
    Court LE; Aggarwal A; Jhingran A; Naidoo K; Netherton T; Olanrewaju A; Peterson C; Parkes J; Simonds H; Trauernicht C; Zhang L; Beadle BM;
    JCO Glob Oncol; 2024 Mar; 10():e2300376. PubMed ID: 38484191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process.
    Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q
    Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases.
    Zhong Y; Yang Y; Fang Y; Wang J; Hu W
    Front Oncol; 2021; 11():638197. PubMed ID: 34026615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning algorithm performance in contouring head and neck organs at risk: a systematic review and single-arm meta-analysis.
    Liu P; Sun Y; Zhao X; Yan Y
    Biomed Eng Online; 2023 Nov; 22(1):104. PubMed ID: 37915046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of deep learning-based autosegmentation in breast cancer radiotherapy.
    Byun HK; Chang JS; Choi MS; Chun J; Jung J; Jeong C; Kim JS; Chang Y; Chung SY; Lee S; Kim YB
    Radiat Oncol; 2021 Oct; 16(1):203. PubMed ID: 34649569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: a general strategy.
    Chen HC; Tan J; Dolly S; Kavanaugh J; Anastasio MA; Low DA; Li HH; Altman M; Gay H; Thorstad WL; Mutic S; Li H
    Med Phys; 2015 Feb; 42(2):1048-59. PubMed ID: 25652517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.