These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. Nichols P; Li L; Kumar S; Buck PM; Singh SK; Goswami S; Balthazor B; Conley TR; Sek D; Allen MJ MAbs; 2015; 7(1):212-30. PubMed ID: 25559441 [TBL] [Abstract][Full Text] [Related]
3. Models for Antibody Behavior in Hydrophobic Interaction Chromatography and in Self-Association. Hebditch M; Roche A; Curtis RA; Warwicker J J Pharm Sci; 2019 Apr; 108(4):1434-1441. PubMed ID: 30476509 [TBL] [Abstract][Full Text] [Related]
4. QSAR Implementation for HIC Retention Time Prediction of mAbs Using Fab Structure: A Comparison between Structural Representations. Karlberg M; de Souza JV; Fan L; Kizhedath A; Bronowska AK; Glassey J Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33126648 [TBL] [Abstract][Full Text] [Related]
5. An alternative assay to hydrophobic interaction chromatography for high-throughput characterization of monoclonal antibodies. Estep P; Caffry I; Yu Y; Sun T; Cao Y; Lynaugh H; Jain T; Vásquez M; Tessier PM; Xu Y MAbs; 2015; 7(3):553-61. PubMed ID: 25790175 [TBL] [Abstract][Full Text] [Related]
6. Solubility Challenges in High Concentration Monoclonal Antibody Formulations: Relationship with Amino Acid Sequence and Intermolecular Interactions. Pindrus M; Shire SJ; Kelley RF; Demeule B; Wong R; Xu Y; Yadav S Mol Pharm; 2015 Nov; 12(11):3896-907. PubMed ID: 26407030 [TBL] [Abstract][Full Text] [Related]
7. Developability Assessment of Engineered Monoclonal Antibody Variants with a Complex Self-Association Behavior Using Complementary Analytical and in Silico Tools. Shan L; Mody N; Sormani P; Rosenthal KL; Damschroder MM; Esfandiary R Mol Pharm; 2018 Dec; 15(12):5697-5710. PubMed ID: 30395473 [TBL] [Abstract][Full Text] [Related]
9. Modeling the impact of amino acid substitution in a monoclonal antibody on cation exchange chromatography. Saleh D; Hess R; Ahlers-Hesse M; Beckert N; Schönberger M; Rischawy F; Wang G; Bauer J; Blech M; Kluters S; Studts J; Hubbuch J Biotechnol Bioeng; 2021 Aug; 118(8):2923-2933. PubMed ID: 33871060 [TBL] [Abstract][Full Text] [Related]
10. Aspartate isomerization in the complementarity-determining regions of two closely related monoclonal antibodies. Wakankar AA; Borchardt RT; Eigenbrot C; Shia S; Wang YJ; Shire SJ; Liu JL Biochemistry; 2007 Feb; 46(6):1534-44. PubMed ID: 17279618 [TBL] [Abstract][Full Text] [Related]
11. Intrinsic physicochemical profile of marketed antibody-based biotherapeutics. Ahmed L; Gupta P; Martin KP; Scheer JM; Nixon AE; Kumar S Proc Natl Acad Sci U S A; 2021 Sep; 118(37):. PubMed ID: 34504010 [TBL] [Abstract][Full Text] [Related]
12. HIC resolution of an IgG1 with an oxidized Trp in a complementarity determining region. Boyd D; Kaschak T; Yan B J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):955-60. PubMed ID: 21440514 [TBL] [Abstract][Full Text] [Related]
13. An accelerated surface-mediated stress assay of antibody instability for developability studies. Kopp MRG; Wolf Pérez AM; Zucca MV; Capasso Palmiero U; Friedrichsen B; Lorenzen N; Arosio P MAbs; 2020; 12(1):1815995. PubMed ID: 32954930 [TBL] [Abstract][Full Text] [Related]
14. Molecular Characterization of Two Monoclonal Antibodies against the Same Epitope on B-Cell Receptor Associated Protein 31. Kim WT; Shin S; Hwang HJ; Kim MK; Jung HS; Park H; Ryu CJ PLoS One; 2016; 11(12):e0167527. PubMed ID: 27907150 [TBL] [Abstract][Full Text] [Related]
15. Molecular modeling of cardiac glycoside binding by the human sequence monoclonal antibody 1B3. Paula S; Monson N; Ball WJ Proteins; 2005 Aug; 60(3):382-91. PubMed ID: 15971203 [TBL] [Abstract][Full Text] [Related]
16. A competitive binding-mass spectrometry strategy for high-throughput evaluation of potential critical quality attributes of therapeutic monoclonal antibodies. Zhang Z; Yan Y; Wang S; Li N MAbs; 2022; 14(1):2133674. PubMed ID: 36224723 [TBL] [Abstract][Full Text] [Related]
17. Isomerization in the CDR2 of a monoclonal antibody: Binding analysis and factors that influence the isomerization rate. Dick LW; Qiu D; Wong RB; Cheng KC Biotechnol Bioeng; 2010 Feb; 105(3):515-23. PubMed ID: 19806678 [TBL] [Abstract][Full Text] [Related]
18. Aggregation-resistant domain antibodies engineered with charged mutations near the edges of the complementarity-determining regions. Perchiacca JM; Ladiwala AR; Bhattacharya M; Tessier PM Protein Eng Des Sel; 2012 Oct; 25(10):591-601. PubMed ID: 22843678 [TBL] [Abstract][Full Text] [Related]
19. Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions. Finlay WJ; Cunningham O; Lambert MA; Darmanin-Sheehan A; Liu X; Fennell BJ; Mahon CM; Cummins E; Wade JM; O'Sullivan CM; Tan XY; Piche N; Pittman DD; Paulsen J; Tchistiakova L; Kodangattil S; Gill D; Hufton SE J Mol Biol; 2009 May; 388(3):541-58. PubMed ID: 19285987 [TBL] [Abstract][Full Text] [Related]
20. Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning. Jain T; Boland T; Lilov A; Burnina I; Brown M; Xu Y; Vásquez M Bioinformatics; 2017 Dec; 33(23):3758-3766. PubMed ID: 28961999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]