These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 30110306)

  • 1. Jacobi circle and annular polynomials: modal wavefront reconstruction from wavefront gradient.
    Sun W; Wang S; He X; Xu B
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jul; 35(7):1140-1148. PubMed ID: 30110306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of annular wavefront interpretation with Zernike circle polynomials and annular polynomials.
    Hou X; Wu F; Yang L; Chen Q
    Appl Opt; 2006 Dec; 45(35):8893-901. PubMed ID: 17119589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orthonormal vector general polynomials derived from the Cartesian gradient of the orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TPJ
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):840-849. PubMed ID: 29877326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative assessment of orthogonal polynomials for wavefront reconstruction over the square aperture.
    Ye J; Gao Z; Wang S; Cheng J; Wang W; Sun W
    J Opt Soc Am A Opt Image Sci Vis; 2014 Oct; 31(10):2304-11. PubMed ID: 25401259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthonormal polynomials in wavefront analysis: error analysis.
    Dai GM; Mahajan VN
    Appl Opt; 2008 Jul; 47(19):3433-45. PubMed ID: 18594590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces.
    Hou X; Wu F; Yang L; Wu S; Chen Q
    Appl Opt; 2006 May; 45(15):3442-55. PubMed ID: 16708088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials.
    Rahbar K; Faez K; Attaran Kakhki E
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1988-93. PubMed ID: 24322854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthonormal polynomials in wavefront analysis: analytical solution.
    Mahajan VN; Dai GM
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2994-3016. PubMed ID: 17767271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations.
    El Gawhary O
    Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry: comparisons of existing algorithms.
    Dai F; Tang F; Wang X; Sasaki O; Feng P
    Appl Opt; 2012 Jul; 51(21):5028-37. PubMed ID: 22858941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modal wavefront reconstruction for radial shearing interferometer with lateral shear.
    Gu N; Huang L; Yang Z; Luo Q; Rao C
    Opt Lett; 2011 Sep; 36(18):3693-5. PubMed ID: 21931435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.
    Zhao C; Burge JH
    Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recursive formula to compute Zernike radial polynomials.
    Honarvar Shakibaei B; Paramesran R
    Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wave-front interpretation with Zernike polynomials.
    Wang JY; Silva DE
    Appl Opt; 1980 May; 19(9):1510-8. PubMed ID: 20221066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials.
    Janssen AJ
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical calibration of slope response of Zernike modes in a Shack-Hartmann wavefront sensor based on matrix product.
    Zhang Y; Wang S; Xian H; Rao C
    Opt Lett; 2022 Mar; 47(6):1466-1469. PubMed ID: 35290339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zernike annular polynomials and optical aberrations of systems with annular pupils.
    Mahajan VN
    Appl Opt; 1994 Dec; 33(34):8125-7. PubMed ID: 20963042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront propagation based on the ray transfer matrix and numerical orthogonal Zernike gradient polynomials.
    Yin H; Gao Z; Yuan Q; Chen L; Bi J; Cao X; Huang J
    J Opt Soc Am A Opt Image Sci Vis; 2019 Jun; 36(6):1072-1078. PubMed ID: 31158139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.