These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30110490)

  • 21. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A pilot study on the importance of forefoot bone length in male 400-m sprinters: is there a key morphological factor for superior long sprint performance?
    Tomita D; Suga T; Tanaka T; Ueno H; Miyake Y; Otsuka M; Nagano A; Isaka T
    BMC Res Notes; 2018 Aug; 11(1):583. PubMed ID: 30103812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Center of mass velocity comparison using a whole body magnetic inertial measurement unit system and force platforms in well trained sprinters in straight-line and curve sprinting.
    Millot B; Blache P; Dinu D; Arnould A; Jusseaume J; Hanon C; Slawinski J
    Gait Posture; 2023 Jan; 99():90-97. PubMed ID: 36368241
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration.
    Werkhausen A; Willwacher S; Albracht K
    Scand J Med Sci Sports; 2021 Jul; 31(7):1471-1480. PubMed ID: 33749906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences between junior and senior male sprinters in physiological variables associated with sprint performance.
    Yoshimoto T; Takai Y; Tsuchie H; Chiba Y; Kanehisa H
    J Sports Med Phys Fitness; 2022 Dec; 62(12):1615-1622. PubMed ID: 35179332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active muscle and tendon stiffness of plantar flexors in sprinters.
    Kubo K; Miyazaki D; Ikebukuro T; Yata H; Okada M; Tsunoda N
    J Sports Sci; 2017 Apr; 35(8):742-748. PubMed ID: 27211524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Morphological and mechanical properties of muscle and tendon in highly trained sprinters.
    Kubo K; Ikebukuro T; Yata H; Tomita M; Okada M
    J Appl Biomech; 2011 Nov; 27(4):336-44. PubMed ID: 21896950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of a Body-Weight Supporting Kite on Sprint Running Kinematics in Well-Trained Sprinters.
    Kratky S; Buchecker M; Pfusterschmied J; Szekely C; Müller E
    J Strength Cond Res; 2016 Jan; 30(1):102-8. PubMed ID: 26270692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of different anthropometry-driven block settings on sprint start performance.
    Cavedon V; Bezodis NE; Sandri M; Golia S; Zancanaro C; Milanese C
    Eur J Sport Sci; 2023 Jul; 23(7):1110-1120. PubMed ID: 36453590
    [No Abstract]   [Full Text] [Related]  

  • 30. Joint power generation differentiates young and adult sprinters during the transition from block start into acceleration: a cross-sectional study.
    Debaere S; Vanwanseele B; Delecluse C; Aerenhouts D; Hagman F; Jonkers I
    Sports Biomech; 2017 Nov; 16(4):452-462. PubMed ID: 28355967
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sprint Acceleration Mechanics in Masters Athletes.
    Pantoja PD; Saez DE Villarreal E; Brisswalter J; Peyré-Tartaruga LA; Morin JB
    Med Sci Sports Exerc; 2016 Dec; 48(12):2469-2476. PubMed ID: 27414690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human ankle plantar flexor muscle-tendon mechanics and energetics during maximum acceleration sprinting.
    Lai A; Schache AG; Brown NA; Pandy MG
    J R Soc Interface; 2016 Aug; 13(121):. PubMed ID: 27581481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anthropometry-driven block setting improves starting block performance in sprinters.
    Cavedon V; Sandri M; Pirlo M; Petrone N; Zancanaro C; Milanese C
    PLoS One; 2019; 14(3):e0213979. PubMed ID: 30917173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.
    Charalambous L; Irwin G; Bezodis IN; Kerwin D
    J Sports Sci; 2012; 30(1):1-9. PubMed ID: 22098532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asymmetries of kinematics and kinetics in female and male sprinting.
    Nagahara R; Gleadhill S
    J Sports Med Phys Fitness; 2023 Aug; 63(8):891-898. PubMed ID: 37166253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lower limb joint kinetics in the starting blocks and first stance in athletic sprinting.
    Brazil A; Exell T; Wilson C; Willwacher S; Bezodis I; Irwin G
    J Sports Sci; 2017 Aug; 35(16):1629-1635. PubMed ID: 27598715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biomechanical comparison of initial sprint acceleration performance and technique in an elite athlete with cerebral palsy and able-bodied sprinters.
    Bezodis IN; Cowburn J; Brazil A; Richardson R; Wilson C; Exell TA; Irwin G
    Sports Biomech; 2020 Apr; 19(2):189-200. PubMed ID: 29768121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ankle joint mechanics and foot proportions differ between human sprinters and non-sprinters.
    Baxter JR; Novack TA; Van Werkhoven H; Pennell DR; Piazza SJ
    Proc Biol Sci; 2012 May; 279(1735):2018-24. PubMed ID: 22189400
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Joint Torque and Mechanical Power of Lower Extremity and Its Relevance to Hamstring Strain during Sprint Running.
    Zhong Y; Fu W; Wei S; Li Q; Liu Y
    J Healthc Eng; 2017; 2017():8927415. PubMed ID: 29065661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between kinematic characteristics and ratio of forces during initial sprint acceleration.
    King D; Burnie L; Nagahara R; Bezodis NE
    J Sports Sci; 2022 Nov; 40(22):2524-2532. PubMed ID: 36722337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.