These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30110549)

  • 81. Ultra-high resolution imaging of DNA and nucleosomes using non-contact atomic force microscopy.
    Davies E; Teng KS; Conlan RS; Wilks SP
    FEBS Lett; 2005 Mar; 579(7):1702-6. PubMed ID: 15757664
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Selective formation of a latticed nanostructure with the precise alignment of DNA-templated gold nanowires.
    Kim HJ; Roh Y; Hong B
    Langmuir; 2010 Dec; 26(23):18315-9. PubMed ID: 20973556
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Formation of aminosilane film on mica.
    Mourougou-Candoni N; Thibaudau F
    J Phys Chem B; 2009 Oct; 113(39):13026-34. PubMed ID: 19735121
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: influence of the surface friction.
    Pastré D; Piétrement O; Zozime A; Le Cam E
    Biopolymers; 2005 Jan; 77(1):53-62. PubMed ID: 15578645
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Controllable dimension of ZnO nanowalls on GaN/c-Al2O3 substrate by vapor phase epitaxy method.
    Song WY; Shin TI; Kang SM; Kim SW; Yang JH; Park MH; Yang CW; Yoon DH
    J Nanosci Nanotechnol; 2008 Sep; 8(9):4783-6. PubMed ID: 19049108
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Flat hydrogel substrate for atomic force microscopy to observe liposomes and lipid membranes.
    Takagi A; Hokonohara H; Kawai T
    Anal Bioanal Chem; 2009 Dec; 395(7):2405-9. PubMed ID: 19802730
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Through-mask anodization of titania dot- and pillar-like nanostructures on bulk Ti substrates using a nanoporous anodic alumina mask.
    Sjöström T; Fox N; Su B
    Nanotechnology; 2009 Apr; 20(13):135305. PubMed ID: 19420496
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Guest-mediated access to a single DNA nanostructure from a library of multiple assemblies.
    Aldaye FA; Sleiman HF
    J Am Chem Soc; 2007 Aug; 129(33):10070-1. PubMed ID: 17665914
    [No Abstract]   [Full Text] [Related]  

  • 89. Sequence-specific recognition of DNA nanostructures.
    Rusling DA; Fox KR
    Methods; 2014 May; 67(2):123-33. PubMed ID: 24583116
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Atomic force microscopy of DNA at high humidity: irreversible conformational switching of supercoiled molecules.
    Billingsley DJ; Kirkham J; Bonass WA; Thomson NH
    Phys Chem Chem Phys; 2010 Nov; 12(44):14727-34. PubMed ID: 20927466
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of terraces and steps on Cl-terminated Ge(111) surfaces after HCl treatment in N2 ambient.
    Dei K; Kawase T; Yoneda K; Uchikoshi J; Morita M; Arima K
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2968-72. PubMed ID: 21776662
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Generation of nanostructures of mica supported lysozyme molecules in aqueous solution by atomic force microscopy.
    Leisten F; Wiechmann M; Enders O; Kolb HA
    J Colloid Interface Sci; 2006 Jun; 298(2):508-14. PubMed ID: 16480998
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Preparation of Well-Defined DNA Samples for Reproducible Nanospectroscopic Measurements.
    Lipiec E; Japaridze A; Szczerbiński J; Dietler G; Zenobi R
    Small; 2016 Sep; 12(35):4821-4829. PubMed ID: 27434680
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Improved DNA straightening and attachment via optimal Mg
    Liu Z; Xu H; Wang Y; Yang F; Yin Y; Zhang S; Weng Z; Song Z; Wang Z
    Micron; 2019 Sep; 124():102678. PubMed ID: 31181466
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Ultraflat graphene.
    Lui CH; Liu L; Mak KF; Flynn GW; Heinz TF
    Nature; 2009 Nov; 462(7271):339-41. PubMed ID: 19924211
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Broad-band anti-reflective pore-like sub-wavelength surface nanostructures on sapphire for optical windows.
    Lin ZQ; Wang GG; Tian JL; Wang LY; Zhao DD; Liu Z; Han JC
    Nanotechnology; 2018 Feb; 29(5):055302. PubMed ID: 29303115
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Field-dependent DNA mobility in 20 nm high nanoslits.
    Salieb-Beugelaar GB; Teapal J; Nieuwkasteele Jv; Wijnperlé D; Tegenfeldt JO; Lisdat F; van den Berg A; Eijkel JC
    Nano Lett; 2008 Jul; 8(7):1785-90. PubMed ID: 18393468
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Surface roughness and substrate induced symmetry-breaking: influence on the plasmonic properties of aluminum nanostructure arrays.
    Zhang F; Plain J; Gérard D; Martin J
    Nanoscale; 2021 Jan; 13(3):1915-1926. PubMed ID: 33439182
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Laser processing of sapphire and fabrication of diffractive optical elements.
    Gottumukkala NR; Gupta MC
    Appl Opt; 2022 Mar; 61(9):2391-2397. PubMed ID: 35333258
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Wide-field optical imaging of surface nanostructures.
    Ausserré D; Valignat MP
    Nano Lett; 2006 Jul; 6(7):1384-8. PubMed ID: 16834416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.