These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 30110829)

  • 1. Golden aspect ratio for ion transport simulation in nanopores.
    Sahu S; Zwolak M
    Phys Rev E; 2018 Jul; 98(1-1):012404. PubMed ID: 30110829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maxwell-Hall access resistance in graphene nanopores.
    Sahu S; Zwolak M
    Phys Chem Chem Phys; 2018 Feb; 20(7):4646-4651. PubMed ID: 29400906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of ion transport through nanopores.
    Modi N; Winterhalter M; Kleinekathöfer U
    Nanoscale; 2012 Oct; 4(20):6166-80. PubMed ID: 23198289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein Transport through Nanopores Illuminated by Long-Time-Scale Simulations.
    Mitscha-Baude G; Stadlbauer B; Howorka S; Heitzinger C
    ACS Nano; 2021 Jun; 15(6):9900-9912. PubMed ID: 34096722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Access resistance in protein nanopores. A structure-based computational approach.
    Aguilella-Arzo M; Aguilella VM
    Bioelectrochemistry; 2020 Feb; 131():107371. PubMed ID: 31513986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion current rectification, limiting and overlimiting conductances in nanopores.
    van Oeffelen L; Van Roy W; Idrissi H; Charlier D; Lagae L; Borghs G
    PLoS One; 2015; 10(5):e0124171. PubMed ID: 25978328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion transport in sub-5-nm graphene nanopores.
    Suk ME; Aluru NR
    J Chem Phys; 2014 Feb; 140(8):084707. PubMed ID: 24588191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores.
    Ho MC; Casciola M; Levine ZA; Vernier PT
    J Phys Chem B; 2013 Oct; 117(39):11633-40. PubMed ID: 24001115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing of protein molecules through nanopores: a molecular dynamics study.
    Kannam SK; Kim SC; Rogers PR; Gunn N; Wagner J; Harrer S; Downton MT
    Nanotechnology; 2014 Apr; 25(15):155502. PubMed ID: 24651263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rectification properties of conically shaped nanopores: consequences of miniaturization.
    Pietschmann JF; Wolfram MT; Burger M; Trautmann C; Nguyen G; Pevarnik M; Bayer V; Siwy Z
    Phys Chem Chem Phys; 2013 Oct; 15(39):16917-26. PubMed ID: 24002326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage.
    Edmonds CM; Hudiono YC; Ahmadi AG; Hesketh PJ; Nair S
    J Chem Phys; 2012 Feb; 136(6):065105. PubMed ID: 22360225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolyte solution transport in electropolar nanotubes.
    Zhao J; Culligan PJ; Qiao Y; Zhou Q; Li Y; Tak M; Park T; Chen X
    J Phys Condens Matter; 2010 Aug; 22(31):315301. PubMed ID: 21399357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion transport and molecular organization are coupled in polyelectrolyte-modified nanopores.
    Tagliazucchi M; Rabin Y; Szleifer I
    J Am Chem Soc; 2011 Nov; 133(44):17753-63. PubMed ID: 21942450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion Density-Dependent Dynamic Conductance Switching in Biomimetic Graphene Nanopores.
    Chen F; Athreya N; Zhao C; Xiong M; Tan H; Leburton JP; Feng J
    J Phys Chem Lett; 2022 Apr; 13(16):3602-3608. PubMed ID: 35426690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation?
    Thomas M; Corry B; Hilder TA
    Small; 2014 Apr; 10(8):1453-65. PubMed ID: 24851242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A coarse-grained MARTINI-like force field for DNA unzipping in nanopores.
    Stachiewicz A; Molski A
    J Comput Chem; 2015 May; 36(13):947-56. PubMed ID: 25706623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of dehydration in determining ion transport in narrow pores.
    Richards LA; Schäfer AI; Richards BS; Corry B
    Small; 2012 Jun; 8(11):1701-9. PubMed ID: 22434668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.