BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 3011084)

  • 1. Detection, characterization, and quenching of the intrinsic fluorescence of bovine heart cytochrome c oxidase.
    Hill BC; Horowitz PM; Robinson NC
    Biochemistry; 1986 Apr; 25(8):2287-92. PubMed ID: 3011084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c oxidase exhibits a rapid conformational change upon reduction of CuA: a tryptophan fluorescence study.
    Copeland RA; Smith PA; Chan SI
    Biochemistry; 1987 Nov; 26(23):7311-6. PubMed ID: 2827752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence and circular dichroism spectroscopic studies on bovine lactoperoxidase.
    Deva MS; Behere DV
    Biometals; 1999 Sep; 12(3):219-25. PubMed ID: 10581684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of tryptophan residues of cytochrome P450scc with a highly specific fluorescence quencher, a substrate analogue, compared to acrylamide and iodide.
    Lange R; Anzenbacher P; Müller S; Maurin L; Balny C
    Eur J Biochem; 1994 Dec; 226(3):963-70. PubMed ID: 7813487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new procedure for the purification of monodisperse highly active cytochrome c oxidase from bovine heart.
    Li Y; Naqui A; Frey TG; Chance B
    Biochem J; 1987 Mar; 242(2):417-23. PubMed ID: 3036090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenching of intrinsic fluorescence of yeast cytochrome c peroxidase by covalently- and noncovalently-bound quenchers.
    Fox T; Ferreira-Rajabi L; Hill BC; English AM
    Biochemistry; 1993 Jul; 32(27):6938-43. PubMed ID: 8392866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic tryptophan phosphorescence as a marker of conformation and oxygen diffusion in purified cytochrome oxidase.
    Papp S; King TE; Vanderkooi JM
    FEBS Lett; 1991 May; 283(1):113-6. PubMed ID: 1645290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some aspects of fluorescence and microcalorimetric studies of cytochrome C oxidase.
    Musatov A; Permyakov EA; Bagelova J; Morozova L; Snyrov VI
    Biochem Int; 1990; 21(3):563-71. PubMed ID: 2171527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A photoreversible conformational change in 124 kDa Avena phytochrome.
    Singh BR; Chai YG; Song PS; Lee J; Robinson GW
    Biochim Biophys Acta; 1988 Dec; 936(3):395-405. PubMed ID: 3196711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox-linked conformational changes in bovine heart cytochrome c oxidase: picosecond time-resolved fluorescence studies of cyanide complex.
    Das TK; Mazumdar S
    Biopolymers; 2000; 57(5):316-22. PubMed ID: 10958323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acrylamide quenching of apo- and holo-alpha-lactalbumin in guanidine hydrochloride.
    France RM; Grossman SH
    Biochem Biophys Res Commun; 2000 Mar; 269(3):709-12. PubMed ID: 10720481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles.
    Tortech L; Jaxel C; Vincent M; Gallay J; de Foresta B
    Biochim Biophys Acta; 2001 Sep; 1514(1):76-86. PubMed ID: 11513806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs.
    de Foresta B; Gallay J; Sopkova J; Champeil P; Vincent M
    Biophys J; 1999 Dec; 77(6):3071-84. PubMed ID: 10585929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distance-dependent fluorescence quenching of tryptophan by acrylamide.
    Lakowicz JR; Zelent B; Gryczynski I; Kuśba J; Johnson ML
    Photochem Photobiol; 1994 Sep; 60(3):205-14. PubMed ID: 7972370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The aggregation state of bovine heart cytochrome c oxidase and its kinetics in monomeric and dimeric form.
    Bolli R; Nałecz KA; Azzi A
    Arch Biochem Biophys; 1985 Jul; 240(1):102-16. PubMed ID: 2990338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching.
    Farinas J; Van Hoek AN; Shi LB; Erickson C; Verkman AS
    Biochemistry; 1993 Nov; 32(44):11857-64. PubMed ID: 8218257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational change due to reduction of cytochrome-c oxidase in lauryl maltoside: picosecond time-resolved tryptophan fluorescence studies on the native and heat modified enzyme.
    Das TK; Mazumdar S
    Biochim Biophys Acta; 1994 Dec; 1209(2):227-37. PubMed ID: 7811695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of changing the detergent bound to bovine cytochrome c oxidase upon its individual electron-transfer steps.
    Mahapatro SN; Robinson NC
    Biochemistry; 1990 Jan; 29(3):764-70. PubMed ID: 2159789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit dissociation and protein unfolding in the bovine heart cytochrome oxidase complex induced by guanidine hydrochloride.
    Hill BC; Cook K; Robinson NC
    Biochemistry; 1988 Jun; 27(13):4741-7. PubMed ID: 2844238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myelin basic protein binds heme at a specific site near the tryptophan residue.
    Morris SJ; Bradley D; Campagnoni AT; Stoner GL
    Biochemistry; 1987 Apr; 26(8):2175-82. PubMed ID: 2441743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.