These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 30110852)

  • 1. Model reduction for Kuramoto models with complex topologies.
    Hancock EJ; Gottwald GA
    Phys Rev E; 2018 Jul; 98(1-1):012307. PubMed ID: 30110852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesoscopic model reduction for the collective dynamics of sparse coupled oscillator networks.
    Smith LD; Gottwald GA
    Chaos; 2021 Jul; 31(7):073116. PubMed ID: 34340344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach.
    Pinto RS; Saa A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062801. PubMed ID: 26764738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit.
    Smith LD; Gottwald GA
    Chaos; 2020 Sep; 30(9):093107. PubMed ID: 33003913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplexing topologies and time scales: The gains and losses of synchrony.
    Makovkin S; Kumar A; Zaikin A; Jalan S; Ivanchenko M
    Phys Rev E; 2017 Nov; 96(5-1):052214. PubMed ID: 29347745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model.
    Kundu P; Khanra P; Hens C; Pal P
    Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos in Kuramoto oscillator networks.
    Bick C; Panaggio MJ; Martens EA
    Chaos; 2018 Jul; 28(7):071102. PubMed ID: 30070510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model reduction for networks of coupled oscillators.
    Gottwald GA
    Chaos; 2015 May; 25(5):053111. PubMed ID: 26026323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronization transition of heterogeneously coupled oscillators on scale-free networks.
    Oh E; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph partitions and cluster synchronization in networks of oscillators.
    Schaub MT; O'Clery N; Billeh YN; Delvenne JC; Lambiotte R; Barahona M
    Chaos; 2016 Sep; 26(9):094821. PubMed ID: 27781454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization in the Kuramoto model: a dynamical gradient network approach.
    Chen M; Shang Y; Zou Y; Kurths J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):027101. PubMed ID: 18352156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How heterogeneity in connections and cycles matter for synchronization of complex networks.
    Lacerda JC; Freitas C; Macau EEN; Kurths J
    Chaos; 2021 Nov; 31(11):113134. PubMed ID: 34881600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude dynamics favors synchronization in complex networks.
    Gambuzza LV; Gómez-Gardeñes J; Frasca M
    Sci Rep; 2016 Apr; 6():24915. PubMed ID: 27108847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.
    English LQ; Mertens D; Abdoulkary S; Fritz CB; Skowronski K; Kevrekidis PG
    Phys Rev E; 2016 Dec; 94(6-1):062212. PubMed ID: 28085391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators.
    Papadopoulos L; Kim JZ; Kurths J; Bassett DS
    Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-dimensional dynamics of the Kuramoto model with rational frequency distributions.
    Skardal PS
    Phys Rev E; 2018 Aug; 98(2-1):022207. PubMed ID: 30253541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.