These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs. He ZC; Huang XY; Yu CS Phys Rev E; 2017 Nov; 96(5-1):052126. PubMed ID: 29347668 [TBL] [Abstract][Full Text] [Related]
4. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime. Braumüller J; Marthaler M; Schneider A; Stehli A; Rotzinger H; Weides M; Ustinov AV Nat Commun; 2017 Oct; 8(1):779. PubMed ID: 28974675 [TBL] [Abstract][Full Text] [Related]
5. Smallest quantum thermal machine: The effect of strong coupling and distributed thermal tasks. Man ZX; Xia YJ Phys Rev E; 2017 Jul; 96(1-1):012122. PubMed ID: 29347063 [TBL] [Abstract][Full Text] [Related]
6. Two-level system in spin baths: non-adiabatic dynamics and heat transport. Segal D J Chem Phys; 2014 Apr; 140(16):164110. PubMed ID: 24784256 [TBL] [Abstract][Full Text] [Related]
7. Performance of a quantum heat engine at strong reservoir coupling. Newman D; Mintert F; Nazir A Phys Rev E; 2017 Mar; 95(3-1):032139. PubMed ID: 28415330 [TBL] [Abstract][Full Text] [Related]
9. Microscopic theory of heat transfer between two fermionic thermal baths mediated by a spin system. Ray S; Bag BC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052121. PubMed ID: 26651661 [TBL] [Abstract][Full Text] [Related]
10. Fundamental limits for cooling of linear quantum refrigerators. Freitas N; Paz JP Phys Rev E; 2017 Jan; 95(1-1):012146. PubMed ID: 28208454 [TBL] [Abstract][Full Text] [Related]
11. Quantum self-contained refrigerator in terms of the cavity quantum electrodynamics in the weak internal-coupling regime. Yu CS; Guo BQ; Liu T Opt Express; 2019 Mar; 27(5):6863-6877. PubMed ID: 30876263 [TBL] [Abstract][Full Text] [Related]
12. Quantum topology in the ultrastrong coupling regime. Downing CA; Toghill AJ Sci Rep; 2022 Jul; 12(1):11630. PubMed ID: 35804013 [TBL] [Abstract][Full Text] [Related]
13. Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Yu CS; Zhu QY Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052142. PubMed ID: 25493774 [TBL] [Abstract][Full Text] [Related]
15. Heat transport between two pure-dephasing reservoirs. Werlang T; Valente D Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012143. PubMed ID: 25679606 [TBL] [Abstract][Full Text] [Related]
16. Quantum heat engines and refrigerators: continuous devices. Kosloff R; Levy A Annu Rev Phys Chem; 2014; 65():365-93. PubMed ID: 24689798 [TBL] [Abstract][Full Text] [Related]
17. Coherence and decoherence in quantum absorption refrigerators. Kilgour M; Segal D Phys Rev E; 2018 Jul; 98(1-1):012117. PubMed ID: 30110858 [TBL] [Abstract][Full Text] [Related]
18. Weak and Ultrastrong Coupling Limits of the Quantum Mean Force Gibbs State. Cresser JD; Anders J Phys Rev Lett; 2021 Dec; 127(25):250601. PubMed ID: 35029453 [TBL] [Abstract][Full Text] [Related]
19. Thermal balance and quantum heat transport in nanostructures thermalized by local Langevin heat baths. Sääskilahti K; Oksanen J; Tulkki J Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012128. PubMed ID: 23944435 [TBL] [Abstract][Full Text] [Related]
20. Interpolated energy densities, correlation indicators and lower bounds from approximations to the strong coupling limit of DFT. Vuckovic S; Irons TJ; Wagner LO; Teale AM; Gori-Giorgi P Phys Chem Chem Phys; 2017 Feb; 19(8):6169-6183. PubMed ID: 28230218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]