These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30110878)

  • 1. Kinks in chains with on-site bistable nondegenerate potential: Beyond traveling waves.
    Shiroky IB; Gendelman OV
    Phys Rev E; 2018 Jul; 98(1-1):012220. PubMed ID: 30110878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propagation of transition fronts in nonlinear chains with non-degenerate on-site potentials.
    Shiroky IB; Gendelman OV
    Chaos; 2018 Feb; 28(2):023104. PubMed ID: 29495680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillatory pulse-front waves in a reaction-diffusion system with cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E; 2018 Jun; 97(6-1):062206. PubMed ID: 30011462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear stability of oscillatory wave fronts in chains of coupled oscillators.
    Carpio A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046601. PubMed ID: 15169112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissipative lattice model with exact traveling discrete kink-soliton solutions: discrete breather generation and reaction diffusion regime.
    Comte JC; Marquié P; Remoissenet M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Dec; 60(6 Pt B):7484-9. PubMed ID: 11970697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete kink dynamics in hydrogen-bonded chains: the one-component model.
    Karpan VM; Zolotaryuk Y; Christiansen PL; Zolotaryuk AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 2):066603. PubMed ID: 12513425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exact discrete compactlike traveling kinks and pulses in phi(4) nonlinear lattices.
    Comte JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046619. PubMed ID: 12006059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Onset of wave fronts in a discrete bistable medium.
    Pazó D; Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):065203. PubMed ID: 11736227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation in a FitzHugh-Nagumo-type model with modified excitability.
    Zemskov EP; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026207. PubMed ID: 20866893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traveling and pinned fronts in bistable reaction-diffusion systems on networks.
    Kouvaris NE; Kori H; Mikhailov AS
    PLoS One; 2012; 7(9):e45029. PubMed ID: 23028746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kink-Kink and Kink-Antikink Interactions with Long-Range Tails.
    Christov IC; Decker RJ; Demirkaya A; Gani VA; Kevrekidis PG; Khare A; Saxena A
    Phys Rev Lett; 2019 May; 122(17):171601. PubMed ID: 31107090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory wave fronts in chains of coupled nonlinear oscillators.
    Carpio A; Bonilla LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056621. PubMed ID: 12786310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wave bifurcation and propagation failure in a model of Ca(2+) release.
    Timofeeva Y; Coombes S
    J Math Biol; 2003 Sep; 47(3):249-69. PubMed ID: 12955459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonreciprocal Coupling Induced Self-Assembled Localized Structures.
    Pinto-Ramos D; Alfaro-Bittner K; Clerc MG; Rojas RG
    Phys Rev Lett; 2021 May; 126(19):194102. PubMed ID: 34047597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinning-depinning transition of fronts between standing waves.
    Clerc MG; Fernández-Oto C; Coulibaly S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012901. PubMed ID: 23410398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kink shape solutions of the Maxwell-Lorentz system.
    Sørensen MP; Webb GM; Brio M; Moloney JV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036602. PubMed ID: 15903600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moving nonradiating kinks in nonlocal φ4 and φ4-φ6 models.
    Alfimov GL; Medvedeva EV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056606. PubMed ID: 22181535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave fronts and spatiotemporal chaos in an array of coupled Lorenz oscillators.
    Pazó D; Montejo N; Pérez-Muñuzuri V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066206. PubMed ID: 11415205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlinear resonances and antiresonances of a forced sonic vacuum.
    Pozharskiy D; Zhang Y; Williams MO; McFarland DM; Kevrekidis PG; Vakakis AF; Kevrekidis IG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):063203. PubMed ID: 26764846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate.
    Ren J; Yuan Q
    Chaos; 2017 Aug; 27(8):083124. PubMed ID: 28863478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.