These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 30110895)
1. Almond Shell as a Microporous Carbon Source for Sustainable Cathodes in Lithium⁻Sulfur Batteries. Benítez A; González-Tejero M; Caballero Á; Morales J Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30110895 [TBL] [Abstract][Full Text] [Related]
2. Amylose-Derived Macrohollow Core and Microporous Shell Carbon Spheres as Sulfur Host for Superior Lithium-Sulfur Battery Cathodes. Li X; Cheng X; Gao M; Ren D; Liu Y; Guo Z; Shang C; Sun L; Pan H ACS Appl Mater Interfaces; 2017 Mar; 9(12):10717-10729. PubMed ID: 28233993 [TBL] [Abstract][Full Text] [Related]
3. Pistachio Shell-Derived Carbon Activated with Phosphoric Acid: A More Efficient Procedure to Improve the Performance of Li-S Batteries. Benítez A; Morales J; Caballero Á Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349378 [TBL] [Abstract][Full Text] [Related]
4. Simple and Sustainable Preparation of Nonactivated Porous Carbon from Brewing Waste for High-Performance Lithium-Sulfur Batteries. Tesio AY; Gómez-Cámer JL; Morales J; Caballero A ChemSusChem; 2020 Jul; 13(13):3439-3446. PubMed ID: 32410321 [TBL] [Abstract][Full Text] [Related]
5. Room-Temperature Potassium-Sulfur Batteries Enabled by Microporous Carbon Stabilized Small-Molecule Sulfur Cathodes. Xiong P; Han X; Zhao X; Bai P; Liu Y; Sun J; Xu Y ACS Nano; 2019 Feb; 13(2):2536-2543. PubMed ID: 30677289 [TBL] [Abstract][Full Text] [Related]
6. Moss-Derived Mesoporous Carbon as Bi-Functional Electrode Materials for Lithium⁻Sulfur Batteries and Supercapacitors. Lei W; Liu H; Xiao J; Wang Y; Lin L Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30634610 [TBL] [Abstract][Full Text] [Related]
7. Simple and Sustainable Preparation of Cathodes for Li-S Batteries: Regeneration of Granular Activated Carbon from the Odor Control System of a Wastewater Treatment Plant. Benítez A; Márquez P; Martín MÁ; Caballero A ChemSusChem; 2021 Sep; 14(18):3915-3925. PubMed ID: 34289246 [TBL] [Abstract][Full Text] [Related]
8. Porous Coconut Shell Carbon Offering High Retention and Deep Lithiation of Sulfur for Lithium-Sulfur Batteries. Chen ZH; Du XL; He JB; Li F; Wang Y; Li YL; Li B; Xin S ACS Appl Mater Interfaces; 2017 Oct; 9(39):33855-33862. PubMed ID: 28906102 [TBL] [Abstract][Full Text] [Related]
9. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876 [TBL] [Abstract][Full Text] [Related]
10. Efficient Encapsulation of Small S Hong XJ; Tang XY; Wei Q; Song CL; Wang SY; Dong RF; Cai YP; Si LP ACS Appl Mater Interfaces; 2018 Mar; 10(11):9435-9443. PubMed ID: 29528216 [TBL] [Abstract][Full Text] [Related]
11. A highly ordered meso@microporous carbon-supported sulfur@smaller sulfur core-shell structured cathode for Li-S batteries. Li Z; Jiang Y; Yuan L; Yi Z; Wu C; Liu Y; Strasser P; Huang Y ACS Nano; 2014 Sep; 8(9):9295-303. PubMed ID: 25144303 [TBL] [Abstract][Full Text] [Related]
12. Effect of Varying the Ratio of Carbon Black to Vapor-Grown Carbon Fibers in the Separator on the Performance of Li⁻S Batteries. Jo H; Oh J; Lee YM; Ryou MH Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30875936 [TBL] [Abstract][Full Text] [Related]
13. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957 [TBL] [Abstract][Full Text] [Related]
14. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes. Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278 [TBL] [Abstract][Full Text] [Related]
15. A Polysulfide-Infiltrated Carbon Cloth Cathode for High-Performance Flexible Lithium-Sulfur Batteries. Song JY; Lee HH; Hong WG; Huh YS; Lee YS; Kim HJ; Jun YS Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29414863 [TBL] [Abstract][Full Text] [Related]
16. Nitrogen-Doped Biomass-Derived Carbon Formed by Mechanochemical Synthesis for Lithium-Sulfur Batteries. Schneidermann C; Kensy C; Otto P; Oswald S; Giebeler L; Leistenschneider D; Grätz S; Dörfler S; Kaskel S; Borchardt L ChemSusChem; 2019 Jan; 12(1):310-319. PubMed ID: 30303617 [TBL] [Abstract][Full Text] [Related]
17. Flexible anode materials for lithium-ion batteries derived from waste biomass-based carbon nanofibers: I. Effect of carbonization temperature. Tao L; Huang Y; Yang X; Zheng Y; Liu C; Di M; Zheng Z RSC Adv; 2018 Feb; 8(13):7102-7109. PubMed ID: 35540347 [TBL] [Abstract][Full Text] [Related]
18. Microporous Carbon Polyhedrons Encapsulated Polyacrylonitrile Nanofibers as Sulfur Immobilizer for Lithium-Sulfur Battery. Zhang YZ; Wu ZZ; Pan GL; Liu S; Gao XP ACS Appl Mater Interfaces; 2017 Apr; 9(14):12436-12444. PubMed ID: 28322551 [TBL] [Abstract][Full Text] [Related]
19. Porous carbon materials derived from discarded COVID-19 masks via microwave solvothermal method for lithium‑sulfur batteries. Yuwen C; Liu B; Rong Q; Zhang L; Guo S Sci Total Environ; 2022 Apr; 817():152995. PubMed ID: 35026252 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance. Li Z; Yin L ACS Appl Mater Interfaces; 2015 Feb; 7(7):4029-38. PubMed ID: 25625174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]