These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30110909)

  • 1. Decellularized Tissue for Muscle Regeneration.
    Urciuolo A; De Coppi P
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30110909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perfusable adipose decellularized extracellular matrix biological scaffold co-recellularized with adipose-derived stem cells and L6 promotes functional skeletal muscle regeneration following volumetric muscle loss.
    Liang W; Han M; Li G; Dang W; Wu H; Meng X; Zhen Y; Lin W; Ao R; Hu X; An Y
    Biomaterials; 2024 Jun; 307():122529. PubMed ID: 38489911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Derived Extracellular Matrix Fiber Scaffolds Improve Recovery from Volumetric Muscle Loss.
    Reed C; Huynh T; Schluns J; Phelps P; Hestekin J; Wolchok JC
    Tissue Eng Part A; 2024 Mar; 30(5-6):181-191. PubMed ID: 37658842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel muscle-derived extracellular matrix hydrogel promotes angiogenesis and neurogenesis in volumetric muscle loss.
    Chen Z; Huang Y; Xing H; Tseng T; Edelman H; Perry R; Kyriakides TR
    Matrix Biol; 2024 Mar; 127():38-47. PubMed ID: 38325441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decellularization Strategies for Regenerating Cardiac and Skeletal Muscle Tissues.
    Tan YH; Helms HR; Nakayama KH
    Front Bioeng Biotechnol; 2022; 10():831300. PubMed ID: 35295645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study.
    Dziki J; Badylak S; Yabroudi M; Sicari B; Ambrosio F; Stearns K; Turner N; Wyse A; Boninger ML; Brown EHP; Rubin JP
    NPJ Regen Med; 2016; 1():16008. PubMed ID: 29302336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-stage bioengineering of a layered oesophagus with in vitro expanded muscle and epithelial adult progenitors.
    Urbani L; Camilli C; Phylactopoulos DE; Crowley C; Natarajan D; Scottoni F; Maghsoudlou P; McCann CJ; Pellegata AF; Urciuolo A; Deguchi K; Khalaf S; Aruta SF; Signorelli MC; Kiely D; Hannon E; Trevisan M; Wong RR; Baradez MO; Moulding D; Virasami A; Gjinovci A; Loukogeorgakis S; Mantero S; Thapar N; Sebire N; Eaton S; Lowdell M; Cossu G; Bonfanti P; De Coppi P
    Nat Commun; 2018 Oct; 9(1):4286. PubMed ID: 30327457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascularized and Innervated Skeletal Muscle Tissue Engineering.
    Gilbert-Honick J; Grayson W
    Adv Healthc Mater; 2020 Jan; 9(1):e1900626. PubMed ID: 31622051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss.
    Carnes ME; Pins GD
    Bioengineering (Basel); 2020 Jul; 7(3):. PubMed ID: 32751847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iPSCs: A powerful tool for skeletal muscle tissue engineering.
    Del Carmen Ortuño-Costela M; García-López M; Cerrada V; Gallardo ME
    J Cell Mol Med; 2019 Jun; 23(6):3784-3794. PubMed ID: 30933431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration.
    Nakayama KH; Shayan M; Huang NF
    Adv Healthc Mater; 2019 Mar; 8(5):e1801168. PubMed ID: 30725530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic Scaffolds in Skeletal Muscle Regeneration.
    Mulbauer GD; Matthew HWT
    Discoveries (Craiova); 2019 Mar; 7(1):e90. PubMed ID: 32309608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Osteoinductive Potential of a Decellularized Xenograft Bone Substitute.
    Bracey DN; Jinnah AH; Willey JS; Seyler TM; Hutchinson ID; Whitlock PW; Smith TL; Danelson KA; Emory CL; Kerr BA
    Cells Tissues Organs; 2019; 207(2):97-113. PubMed ID: 31655811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Bioprinting in Skeletal Muscle Tissue Engineering.
    Ostrovidov S; Salehi S; Costantini M; Suthiwanich K; Ebrahimi M; Sadeghian RB; Fujie T; Shi X; Cannata S; Gargioli C; Tamayol A; Dokmeci MR; Orive G; Swieszkowski W; Khademhosseini A
    Small; 2019 Jun; 15(24):e1805530. PubMed ID: 31012262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of various reagents for preparing a decellularized porcine cartilage scaffold.
    Luo Z; Bian Y; Su W; Shi L; Li S; Song Y; Zheng G; Xie A; Xue J
    Am J Transl Res; 2019; 11(3):1417-1427. PubMed ID: 30972171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pre-Clinical Cell Therapeutic Approaches for Repair of Volumetric Muscle Loss.
    Shayan M; Huang NF
    Bioengineering (Basel); 2020 Aug; 7(3):. PubMed ID: 32825213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Scaffolding from Natural-Based Polymers for Volumetric Muscle Injury.
    Nuge T; Liu Z; Liu X; Ang BC; Andriyana A; Metselaar HSC; Hoque ME
    Molecules; 2021 Jan; 26(3):. PubMed ID: 33572728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic Approaches for Volumetric Muscle Loss Injury: A Systematic Review and Meta-Analysis.
    Greising SM; Corona BT; McGann C; Frankum JK; Warren GL
    Tissue Eng Part B Rev; 2019 Dec; 25(6):510-525. PubMed ID: 31578930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of porcine skeletal muscle extracellular matrix-derived hydrogels with improved properties and low immunogenicity.
    Barajaa MA; Otsuka T; Ghosh D; Kan HM; Laurencin CT
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2322822121. PubMed ID: 38687784
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.