These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30111657)

  • 21. MyoD protein expression in Xenopus embryos closely follows a mesoderm induction-dependent amplification of MyoD transcription and is synchronous across the future somite axis.
    Harvey RP
    Mech Dev; 1992 May; 37(3):141-9. PubMed ID: 1323321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hes6 is required for MyoD induction during gastrulation.
    Murai K; Vernon AE; Philpott A; Jones P
    Dev Biol; 2007 Dec; 312(1):61-76. PubMed ID: 17950722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retinoic acid regulation of the Mesp-Ripply feedback loop during vertebrate segmental patterning.
    Moreno TA; Jappelli R; Izpisúa Belmonte JC; Kintner C
    Dev Biol; 2008 Mar; 315(2):317-30. PubMed ID: 18261720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ethanol promotes differentiation of embryonic stem cells through retinoic acid receptor-γ.
    Serio RN; Laursen KB; Urvalek AM; Gross SS; Gudas LJ
    J Biol Chem; 2019 Apr; 294(14):5536-5548. PubMed ID: 30737277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Wnt signaling mediator tcf1 is required for expression of foxd3 during Xenopus gastrulation.
    Janssens S; Van Den Broek O; Davenport IR; Akkers RC; Liu F; Veenstra GJ; Hoppler S; Vleminckx K; Destrée O
    Int J Dev Biol; 2013; 57(1):49-54. PubMed ID: 23585352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of FoxC1 in early Xenopus development.
    Cha JY; Birsoy B; Kofron M; Mahoney E; Lang S; Wylie C; Heasman J
    Dev Dyn; 2007 Oct; 236(10):2731-41. PubMed ID: 17705306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Median facial clefts in Xenopus laevis: roles of retinoic acid signaling and homeobox genes.
    Kennedy AE; Dickinson AJ
    Dev Biol; 2012 May; 365(1):229-40. PubMed ID: 22405964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification.
    Rankin SA; Han L; McCracken KW; Kenny AP; Anglin CT; Grigg EA; Crawford CM; Wells JM; Shannon JM; Zorn AM
    Cell Rep; 2016 Jun; 16(1):66-78. PubMed ID: 27320915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Xclaudin 1 is required for the proper gastrulation in Xenopus laevis.
    Chang DJ; Hwang YS; Cha SW; Chae JP; Hwang SH; Hahn JH; Bae YC; Lee HS; Park MJ
    Biochem Biophys Res Commun; 2010 Jun; 397(1):75-81. PubMed ID: 20576541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of xSDF-1α, xCXCR4, and xCXCR7 during gastrulation in Xenopus laevis.
    Mishra SK; Nagata T; Furusawa K; Sasaki A; Fukui A
    Int J Dev Biol; 2013; 57(1):95-100. PubMed ID: 23585357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The oxidizing enzyme CYP26a1 tightly regulates the availability of retinoic acid in the gastrulating mouse embryo to ensure proper head development and vasculogenesis.
    Ribes V; Fraulob V; Petkovich M; Dollé P
    Dev Dyn; 2007 Mar; 236(3):644-53. PubMed ID: 17211890
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence that platelet derived growth factor (PDGF) action is required for mesoderm patterning in early amphibian (Xenopus laevis) embryogenesis.
    Ghil JS; Chung HM
    Int J Dev Biol; 1999 Jul; 43(4):329-34. PubMed ID: 10470649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation.
    Kot-Leibovich H; Fainsod A
    Dis Model Mech; 2009; 2(5-6):295-305. PubMed ID: 19380308
    [TBL] [Abstract][Full Text] [Related]  

  • 34. XSu(H)2 is an essential factor for gene expression and morphogenesis of the Xenopus gastrula embryo.
    Ito M; Katada T; Miyatani S; Kinoshita T
    Int J Dev Biol; 2007; 51(1):27-36. PubMed ID: 17183462
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Retinoic acid-dependent control of MAP kinase phosphatase-3 is necessary for early kidney development in Xenopus.
    Le Bouffant R; Wang JH; Futel M; Buisson I; Umbhauer M; Riou JF
    Biol Cell; 2012 Sep; 104(9):516-32. PubMed ID: 22548301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Old wares and new: five decades of investigation of somitogenesis in Xenopus laevis.
    Sparrow DB
    Adv Exp Med Biol; 2008; 638():73-94. PubMed ID: 21038771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis.
    Peres JN; McNulty CL; Durston AJ
    Mech Dev; 2006 Apr; 123(4):321-33. PubMed ID: 16644189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Requirement of mesodermal retinoic acid generated by Raldh2 for posterior neural transformation.
    Molotkova N; Molotkov A; Sirbu IO; Duester G
    Mech Dev; 2005 Feb; 122(2):145-55. PubMed ID: 15652703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anteroposterior patterning and organogenesis of Xenopus laevis require a correct dose of germ cell nuclear factor (xGCNF).
    David R; Joos TO; Dreyer C
    Mech Dev; 1998 Dec; 79(1-2):137-52. PubMed ID: 10349627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis.
    Della Gaspera B; Armand AS; Lecolle S; Charbonnier F; Chanoine C
    PLoS One; 2012; 7(12):e52359. PubMed ID: 23300648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.