BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30111825)

  • 21. Transcriptome Analysis of Rice Seedling Roots in Response to Potassium Deficiency.
    Zhang X; Jiang H; Wang H; Cui J; Wang J; Hu J; Guo L; Qian Q; Xue D
    Sci Rep; 2017 Jul; 7(1):5523. PubMed ID: 28717149
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Transcriptomics of Rice Genotypes with Contrasting Responses to Nitrogen Stress Reveals Genes Influencing Nitrogen Uptake through the Regulation of Root Architecture.
    Subudhi PK; Garcia RS; Coronejo S; Tapia R
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32796695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice.
    Sonoda Y; Ikeda A; Saiki S; Yamaya T; Yamaguchi J
    Plant Cell Physiol; 2003 Dec; 44(12):1396-402. PubMed ID: 14701935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic and co-expression network-based analyses associated with nitrate response in rice.
    Coneva V; Simopoulos C; Casaretto JA; El-Kereamy A; Guevara DR; Cohn J; Zhu T; Guo L; Alexander DC; Bi YM; McNicholas PD; Rothstein SJ
    BMC Genomics; 2014 Dec; 15(1):1056. PubMed ID: 25471115
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
    Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J
    PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots.
    Ohashi M; Ishiyama K; Kojima S; Konishi N; Nakano K; Kanno K; Hayakawa T; Yamaya T
    Plant Cell Physiol; 2015 Apr; 56(4):769-78. PubMed ID: 25634963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene expression profiles in rice roots under low phosphorus stress.
    Li L; Liu C; Lian X
    Plant Mol Biol; 2010 Mar; 72(4-5):423-32. PubMed ID: 19936943
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.).
    Deng QW; Luo XD; Chen YL; Zhou Y; Zhang FT; Hu BL; Xie JK
    Biol Res; 2018 Mar; 51(1):7. PubMed ID: 29544529
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots.
    Huang TL; Nguyen QT; Fu SF; Lin CY; Chen YC; Huang HJ
    Plant Mol Biol; 2012 Dec; 80(6):587-608. PubMed ID: 22987115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.
    Obertello M; Shrivastava S; Katari MS; Coruzzi GM
    Plant Physiol; 2015 Aug; 168(4):1830-43. PubMed ID: 26045464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice.
    Yang C; Ma B; He SJ; Xiong Q; Duan KX; Yin CC; Chen H; Lu X; Chen SY; Zhang JS
    Plant Physiol; 2015 Sep; 169(1):148-65. PubMed ID: 25995326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root.
    Huang Y; Chen H; Reinfelder JR; Liang X; Sun C; Liu C; Li F; Yi J
    Sci Total Environ; 2019 May; 666():445-460. PubMed ID: 30802660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morpho-physiological and transcriptome profiling reveal novel zinc deficiency-responsive genes in rice.
    Bandyopadhyay T; Mehra P; Hairat S; Giri J
    Funct Integr Genomics; 2017 Sep; 17(5):565-581. PubMed ID: 28293806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microarray-based expression analysis of phytohormone-related genes in rice seedlings during cyanide metabolism.
    Yu XZ; Lin YJ; Lu CJ; Gupta DK
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19701-19712. PubMed ID: 29736647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome response to nitrogen starvation in rice.
    Cai H; Lu Y; Xie W; Zhu T; Lian X
    J Biosci; 2012 Sep; 37(4):731-47. PubMed ID: 22922198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RNA-Seq analysis of differentially expressed genes in rice under varied nitrogen supplies.
    Yang SY; Hao DL; Song ZZ; Yang GZ; Wang L; Su YH
    Gene; 2015 Jan; 555(2):305-17. PubMed ID: 25447912
    [TBL] [Abstract][Full Text] [Related]  

  • 37. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice.
    Jia H; Zhang S; Wang L; Yang Y; Zhang H; Cui H; Shao H; Xu G
    J Exp Bot; 2017 Nov; 68(18):5057-5068. PubMed ID: 29036625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes.
    Tan M; Cheng D; Yang Y; Zhang G; Qin M; Chen J; Chen Y; Jiang M
    BMC Plant Biol; 2017 Nov; 17(1):194. PubMed ID: 29115926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low pH stress responsive transcriptome of seedling roots in wheat (Triticum aestivum L.).
    Hu H; He J; Zhao J; Ou X; Li H; Ru Z
    Genes Genomics; 2018 Nov; 40(11):1199-1211. PubMed ID: 30315523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Salt-Responsive Genes are Differentially Regulated at the Chromatin Levels Between Seedlings and Roots in Rice.
    Zheng D; Wang L; Chen L; Pan X; Lin K; Fang Y; Wang XE; Zhang W
    Plant Cell Physiol; 2019 Aug; 60(8):1790-1803. PubMed ID: 31111914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.