BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 30111825)

  • 41. OsSIZ1, a SUMO E3 Ligase Gene, is Involved in the Regulation of the Responses to Phosphate and Nitrogen in Rice.
    Wang H; Sun R; Cao Y; Pei W; Sun Y; Zhou H; Wu X; Zhang F; Luo L; Shen Q; Xu G; Sun S
    Plant Cell Physiol; 2015 Dec; 56(12):2381-95. PubMed ID: 26615033
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The calcium sensor OsCBL1 modulates nitrate signaling to regulate seedling growth in rice.
    Yang J; Deng X; Wang X; Wang J; Du S; Li Y
    PLoS One; 2019; 14(11):e0224962. PubMed ID: 31697744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression profiles of 10,422 genes at early stage of low nitrogen stress in rice assayed using a cDNA microarray.
    Lian X; Wang S; Zhang J; Feng Q; Zhang L; Fan D; Li X; Yuan D; Han B; Zhang Q
    Plant Mol Biol; 2006 Mar; 60(5):617-31. PubMed ID: 16649102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots.
    Moons A; Prinsen E; Bauw G; Van Montagu M
    Plant Cell; 1997 Dec; 9(12):2243-59. PubMed ID: 9437865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Growth, nutrient uptake and transcriptome profiling of rice seedlings in response to mixed provision of ammonium- and nitrate-nitrogen.
    Fu Y; Zhong X; Lu C; Liang K; Pan J; Hu X; Hu R; Li M; Ye Q; Liu Y
    J Plant Physiol; 2023 May; 284():153976. PubMed ID: 37028191
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants.
    Zeng J; Zhang M; Sun X
    PLoS One; 2013; 8(8):e71038. PubMed ID: 23951075
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytosolic GLUTAMINE SYNTHETASE1;1 Modulates Metabolism and Chloroplast Development in Roots.
    Kusano M; Fukushima A; Tabuchi-Kobayashi M; Funayama K; Kojima S; Maruyama K; Yamamoto YY; Nishizawa T; Kobayashi M; Wakazaki M; Sato M; Toyooka K; Osanai-Kondo K; Utsumi Y; Seki M; Fukai C; Saito K; Yamaya T
    Plant Physiol; 2020 Apr; 182(4):1894-1909. PubMed ID: 32024696
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Early signalling pathways in rice roots under vanadate stress.
    Lin CW; Lin CY; Chang CC; Lee RH; Tsai TM; Chen PY; Chi WC; Huang HJ
    Plant Physiol Biochem; 2009 May; 47(5):369-76. PubMed ID: 19250836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancement of porosity and aerenchyma formation in nitrogen-deficient rice roots.
    Abiko T; Obara M
    Plant Sci; 2014 Feb; 215-216():76-83. PubMed ID: 24388517
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The expression profile of genes in rice roots under low phosphorus stress.
    Li L; Qiu X; Li X; Wang S; Lian X
    Sci China C Life Sci; 2009 Nov; 52(11):1055-64. PubMed ID: 19937204
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A strigolactone signal is required for adventitious root formation in rice.
    Sun H; Tao J; Hou M; Huang S; Chen S; Liang Z; Xie T; Wei Y; Xie X; Yoneyama K; Xu G; Zhang Y
    Ann Bot; 2015 Jun; 115(7):1155-62. PubMed ID: 25888593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiological Analysis of Brassinosteroid Responses and Sensitivity in Rice.
    Tong H; Chu C
    Methods Mol Biol; 2017; 1564():23-29. PubMed ID: 28124243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings.
    Huang A; Sang Y; Sun W; Fu Y; Yang Z
    PLoS One; 2016; 11(11):e0165732. PubMed ID: 27820840
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots.
    Moons A
    FEBS Lett; 2003 Oct; 553(3):370-6. PubMed ID: 14572653
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lack of Cytosolic Glutamine Synthetase1;2 Activity Reduces Nitrogen-Dependent Biosynthesis of Cytokinin Required for Axillary Bud Outgrowth in Rice Seedlings.
    Ohashi M; Ishiyama K; Kojima S; Kojima M; Sakakibara H; Yamaya T; Hayakawa T
    Plant Cell Physiol; 2017 Apr; 58(4):679-690. PubMed ID: 28186255
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance.
    Bao A; Zhao Z; Ding G; Shi L; Xu F; Cai H
    Int J Mol Sci; 2015 Jun; 16(6):12713-36. PubMed ID: 26053400
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Overexpression of an AP2/ERF Type Transcription Factor OsEREBP1 Confers Biotic and Abiotic Stress Tolerance in Rice.
    Jisha V; Dampanaboina L; Vadassery J; Mithöfer A; Kappara S; Ramanan R
    PLoS One; 2015; 10(6):e0127831. PubMed ID: 26035591
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lack of ACTPK1, an STY kinase, enhances ammonium uptake and use, and promotes growth of rice seedlings under sufficient external ammonium.
    Beier MP; Obara M; Taniai A; Sawa Y; Ishizawa J; Yoshida H; Tomita N; Yamanaka T; Ishizuka Y; Kudo S; Yoshinari A; Takeuchi S; Kojima S; Yamaya T; Hayakawa T
    Plant J; 2018 Mar; 93(6):992-1006. PubMed ID: 29356222
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa).
    Jain M; Kaur N; Garg R; Thakur JK; Tyagi AK; Khurana JP
    Funct Integr Genomics; 2006 Jan; 6(1):47-59. PubMed ID: 16200395
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptome and Co-Expression Network Analysis Reveals the Molecular Mechanism of Rice Root Systems in Response to Low-Nitrogen Conditions.
    Wang W; Xin W; Chen N; Yang F; Li J; Qu G; Jiang X; Xu L; Zhao S; Liu H; Yang L; Zheng H; Zou D; Wang J
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.