BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30112021)

  • 1. Revisiting Connectivity Map from a gene co-expression network analysis.
    Liu W; Tu W; Li L; Liu Y; Wang S; Li L; Tao H; He H
    Exp Ther Med; 2018 Aug; 16(2):493-500. PubMed ID: 30112021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repositioning drugs by targeting network modules: a Parkinson's disease case study.
    Yue Z; Arora I; Zhang EY; Laufer V; Bridges SL; Chen JY
    BMC Bioinformatics; 2017 Dec; 18(Suppl 14):532. PubMed ID: 29297292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Agent Clustering Strategy Based on Metabolic Flux Distribution and Transcriptome Expression for Novel Drug Development.
    Ruan Y; Chen XH; Jiang F; Liu YG; Liang XL; Lv BM; Zhang HY; Zhang QY
    Biomedicines; 2021 Nov; 9(11):. PubMed ID: 34829869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2.
    Zhang L; Kang W; Lu X; Ma S; Dong L; Zou B
    Gene; 2019 Jan; 681():15-25. PubMed ID: 30266498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MD-Miner: a network-based approach for personalized drug repositioning.
    Wu H; Miller E; Wijegunawardana D; Regan K; Payne PRO; Li F
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):86. PubMed ID: 28984195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Network-Based Drug Prediction in Thyroid Cancer.
    Xu X; Long H; Xi B; Ji B; Li Z; Dang Y; Jiang C; Yao Y; Yang J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DMAP: a connectivity map database to enable identification of novel drug repositioning candidates.
    Huang H; Nguyen T; Ibrahim S; Shantharam S; Yue Z; Chen JY
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S4. PubMed ID: 26423722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.
    Yoo M; Shin J; Kim H; Kim J; Kang J; Tan AC
    Comput Methods Programs Biomed; 2019 Jun; 174():33-40. PubMed ID: 29650251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional Module Connectivity Map (FMCM): a framework for searching repurposed drug compounds for systems treatment of cancer and an application to colorectal adenocarcinoma.
    Chung FH; Chiang YR; Tseng AL; Sung YC; Lu J; Huang MC; Ma N; Lee HC
    PLoS One; 2014; 9(1):e86299. PubMed ID: 24475102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open MoA: revealing the mechanism of action (MoA) based on network topology and hierarchy.
    Liao X; Ozcan M; Shi M; Kim W; Jin H; Li X; Turkez H; Achour A; Uhlén M; Mardinoglu A; Zhang C
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37930015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic evaluation of connectivity map for disease indications.
    Cheng J; Yang L; Kumar V; Agarwal P
    Genome Med; 2014; 6(12):540. PubMed ID: 25606058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific gene module pair-based target identification and drug discovery.
    Li P; Bai C; Zhan L; Zhang H; Zhang Y; Zhang W; Wang Y; Zhao J
    Front Pharmacol; 2022; 13():1089217. PubMed ID: 36726786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional networks implicated in human nonalcoholic fatty liver disease.
    Ye H; Liu W
    Mol Genet Genomics; 2015 Oct; 290(5):1793-804. PubMed ID: 25851235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma.
    Wan Q; Tang J; Han Y; Wang D
    Exp Eye Res; 2018 Jan; 166():13-20. PubMed ID: 29031853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of gene expression profiles and key genes in subchondral bone of osteoarthritis using weighted gene coexpression network analysis.
    Guo SM; Wang JX; Li J; Xu FY; Wei Q; Wang HM; Huang HQ; Zheng SL; Xie YJ; Zhang C
    J Cell Biochem; 2018 Sep; 119(9):7687-7695. PubMed ID: 29904957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug repositioning in head and neck squamous cell carcinoma: An integrated pathway analysis based on connectivity map and differential gene expression.
    Wei GG; Gao L; Tang ZY; Lin P; Liang LB; Zeng JJ; Chen G; Zhang LC
    Pathol Res Pract; 2019 Jun; 215(6):152378. PubMed ID: 30871913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.
    Liu J; Jing L; Tu X
    BMC Cardiovasc Disord; 2016 Mar; 16():54. PubMed ID: 26944061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning.
    He J; Yan H; Cai H; Li X; Guan Q; Zheng W; Chen R; Liu H; Song K; Guo Z; Wang X
    J Transl Med; 2017 Sep; 15(1):198. PubMed ID: 28962576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weighted Gene Co-Expression Network Analysis Identifies Critical Genes in the Development of Heart Failure After Acute Myocardial Infarction.
    Niu X; Zhang J; Zhang L; Hou Y; Pu S; Chu A; Bai M; Zhang Z
    Front Genet; 2019; 10():1214. PubMed ID: 31850068
    [No Abstract]   [Full Text] [Related]  

  • 20. Influence of batch effect correction methods on drug induced differential gene expression profiles.
    Zhou W; Koudijs KKM; Böhringer S
    BMC Bioinformatics; 2019 Aug; 20(1):437. PubMed ID: 31438848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.