BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30112250)

  • 1. In Vivo Evaluation of the Limbus Using Anterior Segment Optical Coherence Tomography.
    Le Q; Cordova D; Xu J; Deng SX
    Transl Vis Sci Technol; 2018 Jul; 7(4):12. PubMed ID: 30112250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency.
    Le Q; Yang Y; Deng SX; Xu J
    Clin Exp Ophthalmol; 2017 Apr; 45(3):224-231. PubMed ID: 27591548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal Epithelial Thickness Measured Using Anterior Segment Optical Coherence Tomography as a Diagnostic Parameter for Limbal Stem Cell Deficiency.
    Liang Q; Le Q; Cordova DW; Tseng CH; Deng SX
    Am J Ophthalmol; 2020 Aug; 216():132-139. PubMed ID: 32283095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of corneal and limbal epithelial thickness by anterior segment optical coherence tomography and in vivo confocal microscopy.
    Le Q; Chen Y; Yang Y; Xu J
    BMC Ophthalmol; 2016 Sep; 16(1):163. PubMed ID: 27645227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography.
    Yang Y; Hong J; Deng SX; Xu J
    Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5032-8. PubMed ID: 25052994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography.
    Mehtani A; Agarwal MC; Sharma S; Chaudhary S
    Indian J Ophthalmol; 2017 Nov; 65(11):1120-1126. PubMed ID: 29133636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of corneal and limbal epithelial thickness by spectral-domain optical coherence tomography in brachycephalic and non-brachycephalic dogs.
    Jeong Y; Kang S; Ahn J; Kim S; Kim H; Park J; Seo K
    Vet Ophthalmol; 2023 Apr; 26 Suppl 1():89-97. PubMed ID: 35904513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the Effects of Pterygium and Aging on Limbal Structure Using Optical Coherence Tomography.
    Li S; Yu H; Wang P; Feng Y
    J Clin Med; 2022 Oct; 11(19):. PubMed ID: 36233745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomarkers of in vivo limbal stem cell function.
    Le Q; Chauhan T; Cordova D; Tseng CH; Deng SX
    Ocul Surf; 2022 Jan; 23():123-130. PubMed ID: 34902592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative evaluation of corneal and limbal epithelial thickness in brachycephalic dogs with and without corneal diseases using spectral domain optical coherence tomography.
    Jeong Y; Kang S; Seo K
    Vet Ophthalmol; 2024 Jan; 27(1):30-39. PubMed ID: 37118910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of human central cornea and limbus in vivo using optical coherence tomography.
    Feng Y; Simpson TL
    Optom Vis Sci; 2005 May; 82(5):416-9. PubMed ID: 15894917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the external limbus on corneoscleral topography with ultrawide-field optical coherence tomography.
    Llorens-Quintana C; Li Y; Chen S; Fujimoto JG; Huang D
    Cont Lens Anterior Eye; 2023 Dec; 46(6):102065. PubMed ID: 37827941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corneal epithelium and limbal region alterations due to glaucoma medications evaluated by anterior segment optic coherence tomography: a case-control study.
    Güçlü H; Çınar AK; Çınar AC; Akaray İ; Şambel Aykutlu M; Sakallıoğlu AK; Gürlü V
    Cutan Ocul Toxicol; 2021 Jun; 40(2):85-94. PubMed ID: 33719786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evaluation the change of corneal epithelium thickness after pterygium excision with conjunctival autograft transplantation by Fourier domain optical coherence tomography].
    Wu D; Hong J; Wang F; Cui X; Yang Y; Zhao Y; Xu J
    Zhonghua Yan Ke Za Zhi; 2014 Nov; 50(11):833-8. PubMed ID: 25582209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo confocal microscopy and optical coherence tomography as innovative tools for the diagnosis of limbal stem cell deficiency.
    Banayan N; Georgeon C; Grieve K; Ghoubay D; Baudouin F; Borderie V
    J Fr Ophtalmol; 2018 Nov; 41(9):e395-e406. PubMed ID: 30458924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral-domain Optical Coherence Tomography in Limbal Stem Cell Deficiency. A Case-Control Study.
    Banayan N; Georgeon C; Grieve K; Borderie VM
    Am J Ophthalmol; 2018 Jun; 190():179-190. PubMed ID: 29621511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limbal stem cell transplantation: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2008; 8(7):1-58. PubMed ID: 23074512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography.
    Feng Y; Simpson TL
    Optom Vis Sci; 2008 Sep; 85(9):E880-3. PubMed ID: 18772715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Case of Corneal Neovascularization Misdiagnosed as Total Limbal Stem Cell Deficiency.
    Le Q; Samson CM; Deng SX
    Cornea; 2018 Aug; 37(8):1067-1070. PubMed ID: 29781927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [
    Wang LY; Wei ZY; Cao K; Su GY; Liang QF
    Zhonghua Yan Ke Za Zhi; 2020 Jun; 56(6):447-455. PubMed ID: 32842327
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.