These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 30112534)
21. Ultrahigh lattice thermal conductivity in topological semimetal TaN caused by a large acoustic-optical gap. Guo SD; Liu BG J Phys Condens Matter; 2018 Mar; 30(10):105701. PubMed ID: 29376833 [TBL] [Abstract][Full Text] [Related]
22. Strain-induced enhancement of thermoelectric performance of TiS Li G; Yao K; Gao G Nanotechnology; 2018 Jan; 29(1):015204. PubMed ID: 29125467 [TBL] [Abstract][Full Text] [Related]
23. Theoretical Investigation on the Microscopic Mechanism of Lattice Thermal Conductivity of ZnXP Wei L; Lv X; Yang Y; Xu J; Yu H; Zhang H; Wang X; Liu B; Zhang C; Zhou J Inorg Chem; 2019 Apr; 58(7):4320-4327. PubMed ID: 30848900 [TBL] [Abstract][Full Text] [Related]
24. Ultrahigh and anisotropic thermal transport in the hybridized monolayer (BC Shafique A; Shin YH Phys Chem Chem Phys; 2019 Aug; 21(31):17306-17313. PubMed ID: 31353375 [TBL] [Abstract][Full Text] [Related]
25. Comparative investigation of the thermal transport properties of Janus SnSSe and SnS Liu G; Wang H; Gao Z; Li GL Phys Chem Chem Phys; 2020 Aug; 22(29):16796-16803. PubMed ID: 32662487 [TBL] [Abstract][Full Text] [Related]
26. First-principles study of thermal transport in nitrogenated holey graphene. Ouyang T; Xiao H; Tang C; Zhang X; Hu M; Zhong J Nanotechnology; 2017 Jan; 28(4):045709. PubMed ID: 27997371 [TBL] [Abstract][Full Text] [Related]
27. Tensile strain and finite size modulation of low lattice thermal conductivity in monolayer TMDCs (HfSe Chen G; Bao W; Wang Z; Tang D Phys Chem Chem Phys; 2023 Mar; 25(13):9225-9237. PubMed ID: 36919457 [TBL] [Abstract][Full Text] [Related]
28. Potential 2D thermoelectric material ATeI (A = Sb and Bi) monolayers from a first-principles study. Guo SD; Zhang AX; Li HC Nanotechnology; 2017 Nov; 28(44):445702. PubMed ID: 28825405 [TBL] [Abstract][Full Text] [Related]
29. Unusual Enhancement in Intrinsic Thermal Conductivity of Multilayer Graphene by Tensile Strains. Kuang Y; Lindsay L; Huang B Nano Lett; 2015 Sep; 15(9):6121-7. PubMed ID: 26241731 [TBL] [Abstract][Full Text] [Related]
30. Manipulation of Phonon Transport in Thermoelectrics. Chen Z; Zhang X; Pei Y Adv Mater; 2018 Apr; 30(17):e1705617. PubMed ID: 29399915 [TBL] [Abstract][Full Text] [Related]
31. Effects of biaxial tensile strain on the first-principles-driven thermal conductivity of buckled arsenene and phosphorene. Taheri A; Da Silva C; Amon CH Phys Chem Chem Phys; 2018 Nov; 20(43):27611-27620. PubMed ID: 30371690 [TBL] [Abstract][Full Text] [Related]
32. Intrinsic Thermal conductivities of monolayer transition metal dichalcogenides MX Zulfiqar M; Zhao Y; Li G; Li Z; Ni J Sci Rep; 2019 Mar; 9(1):4571. PubMed ID: 30872639 [TBL] [Abstract][Full Text] [Related]
33. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer. Chen A; Tong H; Wu CW; Li SY; Jia PZ; Zhou WX Phys Chem Chem Phys; 2023 Dec; 26(1):421-429. PubMed ID: 38078535 [TBL] [Abstract][Full Text] [Related]
34. Thermal transport in functionalized graphene. Kim JY; Lee JH; Grossman JC ACS Nano; 2012 Oct; 6(10):9050-7. PubMed ID: 22973878 [TBL] [Abstract][Full Text] [Related]
35. Lattice Instability and Ultralow Lattice Thermal Conductivity of Layered PbIF. Yedukondalu N; Shafique A; Rakesh Roshan SC; Barhoumi M; Muthaiah R; Ehm L; Parise JB; Schwingenschlögl U ACS Appl Mater Interfaces; 2022 Sep; 14(36):40738-40748. PubMed ID: 36053500 [TBL] [Abstract][Full Text] [Related]
36. The intrinsically low lattice thermal conductivity of monolayer T-Au Ji Y; Chen X; Sun Z; Shen C; Wang N Phys Chem Chem Phys; 2023 Nov; 25(46):31781-31790. PubMed ID: 37965932 [TBL] [Abstract][Full Text] [Related]