These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 30112607)
1. Chitosan-based binary dry powder inhaler carrier with nanometer roughness for improving in vitro and in vivo aerosolization performance. Huang Y; Huang Z; Zhang X; Zhao Z; Zhang X; Wang K; Ma C; Zhu C; Pan X; Wu C Drug Deliv Transl Res; 2018 Oct; 8(5):1274-1288. PubMed ID: 30112607 [TBL] [Abstract][Full Text] [Related]
2. Dry Powder Inhalers Based on Chitosan-Mannitol Binary Carriers: Effect of the Powder Properties on the Aerosolization Performance. Zhao Z; Wang G; Huang Z; Huang Y; Chen H; Pan X; Zhang X AAPS PharmSciTech; 2022 Jun; 23(5):164. PubMed ID: 35697949 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the Surface Roughness Length Scales of Lactose Carrier Particles in Dry Powder Inhalers. Tan BMJ; Chan LW; Heng PWS Mol Pharm; 2018 Apr; 15(4):1635-1642. PubMed ID: 29490144 [TBL] [Abstract][Full Text] [Related]
5. Effect of Roughness on the Dispersion of Dry Powders for Inhalation: a Dynamic Visualization Perspective. Kou X; Heng PWS; Chan LW; Wereley ST; Carvajal MT AAPS PharmSciTech; 2019 Jul; 20(7):271. PubMed ID: 31363868 [TBL] [Abstract][Full Text] [Related]
6. Low density, good flowability cyclodextrin-raffinose binary carrier for dry powder inhaler: anti-hygroscopicity and aerosolization performance enhancement. Zhao Z; Huang Z; Zhang X; Huang Y; Cui Y; Ma C; Wang G; Freeman T; Lu XY; Pan X; Wu C Expert Opin Drug Deliv; 2018 May; 15(5):443-457. PubMed ID: 29532682 [TBL] [Abstract][Full Text] [Related]
7. Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance. Zellnitz S; Schroettner H; Urbanetz NA Drug Dev Ind Pharm; 2015; 41(10):1710-7. PubMed ID: 25632978 [TBL] [Abstract][Full Text] [Related]
8. Surface Modification of lactose carrier particles using a fluid bed coater to improve fine particle fraction for dry powder inhalers. Gong QQ; Tay JYS; Veronica N; Xu J; Heng PWS; Zhang YP; Liew CV Pharm Dev Technol; 2023 Feb; 28(2):164-175. PubMed ID: 36683577 [TBL] [Abstract][Full Text] [Related]
9. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content. Shalash AO; Molokhia AM; Elsayed MM Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831 [TBL] [Abstract][Full Text] [Related]
10. Dry powder inhalers: physicochemical and aerosolization properties of several size-fractions of a promising alterative carrier, freeze-dried mannitol. Kaialy W; Nokhodchi A Eur J Pharm Sci; 2015 Feb; 68():56-67. PubMed ID: 25497318 [TBL] [Abstract][Full Text] [Related]
11. Influence of size and surface roughness of large lactose carrier particles in dry powder inhaler formulations. Donovan MJ; Smyth HD Int J Pharm; 2010 Dec; 402(1-2):1-9. PubMed ID: 20816928 [TBL] [Abstract][Full Text] [Related]
12. Exploring the influence of magnesium stearate content and mixing modality on the rheological properties and in vitro aerosolization of dry powder inhaler. Li J; Ma S; He X; Sun Y; Zhang X; Guan J; Mao S Int J Pharm; 2023 Jul; 642():123179. PubMed ID: 37364785 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading. Du P; Du J; Smyth HDC J Pharm Sci; 2017 Jan; 106(1):366-376. PubMed ID: 27939234 [TBL] [Abstract][Full Text] [Related]
14. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187 [TBL] [Abstract][Full Text] [Related]
15. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations. Jetzer MW; Schneider M; Morrical BD; Imanidis G J Pharm Sci; 2018 Apr; 107(4):984-998. PubMed ID: 29247741 [TBL] [Abstract][Full Text] [Related]
16. Development and Evaluation of Chitosan Microparticles Based Dry Powder Inhalation Formulations of Rifampicin and Rifabutin. Pai RV; Jain RR; Bannalikar AS; Menon MD J Aerosol Med Pulm Drug Deliv; 2016 Apr; 29(2):179-95. PubMed ID: 26406162 [TBL] [Abstract][Full Text] [Related]
18. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate. Mönckedieck M; Kamplade J; Fakner P; Urbanetz NA; Walzel P; Steckel H; Scherließ R Int J Pharm; 2017 May; 524(1-2):351-363. PubMed ID: 28347847 [TBL] [Abstract][Full Text] [Related]
19. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers. Sommerfeld M; Cui Y; Schmalfuß S Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814 [TBL] [Abstract][Full Text] [Related]