BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 30112710)

  • 1. Simulating Developmental Cardiac Morphology in Virtual Reality Using a Deformable Image Registration Approach.
    Abiri A; Ding Y; Abiri P; Packard RRS; Vedula V; Marsden A; Kuo CJ; Hsiai TK
    Ann Biomed Eng; 2018 Dec; 46(12):2177-2188. PubMed ID: 30112710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics.
    Ding Y; Abiri A; Abiri P; Li S; Chang CC; Baek KI; Hsu JJ; Sideris E; Li Y; Lee J; Segura T; Nguyen TP; Bui A; Sevag Packard RR; Fei P; Hsiai TK
    JCI Insight; 2017 Nov; 2(22):. PubMed ID: 29202458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual reality and cardiac anatomy: Exploring immersive three-dimensional cardiac imaging, a pilot study in undergraduate medical anatomy education.
    Maresky HS; Oikonomou A; Ali I; Ditkofsky N; Pakkal M; Ballyk B
    Clin Anat; 2019 Mar; 32(2):238-243. PubMed ID: 30295333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid of light-field and light-sheet imaging to study myocardial function and intracardiac blood flow during zebrafish development.
    Wang Z; Ding Y; Satta S; Roustaei M; Fei P; Hsiai TK
    PLoS Comput Biol; 2021 Jul; 17(7):e1009175. PubMed ID: 34228702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacement Analysis of Myocardial Mechanical Deformation (DIAMOND) Reveals Segmental Heterogeneity of Cardiac Function in Embryonic Zebrafish.
    Chen J; Packard RRS
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiac Light-Sheet Fluorescent Microscopy for Multi-Scale and Rapid Imaging of Architecture and Function.
    Fei P; Lee J; Packard RR; Sereti KI; Xu H; Ma J; Ding Y; Kang H; Chen H; Sung K; Kulkarni R; Ardehali R; Kuo CC; Xu X; Ho CM; Hsiai TK
    Sci Rep; 2016 Mar; 6():22489. PubMed ID: 26935567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae.
    Zhang X; Almasian M; Hassan SS; Jotheesh R; Kadam VA; Polk AR; Saberigarakani A; Rahat A; Yuan J; Lee J; Carroll K; Ding Y
    APL Bioeng; 2023 Jun; 7(2):026112. PubMed ID: 37351330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ConfocalVR: Immersive Visualization for Confocal Microscopy.
    Stefani C; Lacy-Hulbert A; Skillman T
    J Mol Biol; 2018 Oct; 430(21):4028-4035. PubMed ID: 29949752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodal Image-Based Virtual Reality Presurgical Simulation and Evaluation for Trigeminal Neuralgia and Hemifacial Spasm.
    Yao S; Zhang J; Zhao Y; Hou Y; Xu X; Zhang Z; Kikinis R; Chen X
    World Neurosurg; 2018 May; 113():e499-e507. PubMed ID: 29476993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration.
    Neylon J; Qi X; Sheng K; Staton R; Pukala J; Manon R; Low DA; Kupelian P; Santhanam A
    Med Phys; 2015 Jan; 42(1):232-43. PubMed ID: 25563263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Light Sheet Fluorescence Microscopy to Image Zebrafish Eye Development.
    Icha J; Schmied C; Sidhaye J; Tomancak P; Preibisch S; Norden C
    J Vis Exp; 2016 Apr; (110):e53966. PubMed ID: 27167079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY].
    Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T
    Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning enables automated volumetric assessments of cardiac function in zebrafish.
    Akerberg AA; Burns CE; Burns CG; Nguyen C
    Dis Model Mech; 2019 Oct; 12(10):. PubMed ID: 31548281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digital restoration of fragmentary human skeletal remains: Testing the feasibility of virtual reality.
    Jurda M; Urbanová P; Chmelík J
    J Forensic Leg Med; 2019 Aug; 66():50-57. PubMed ID: 31220789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The need for application-based adaptation of deformable image registration.
    Kirby N; Chuang C; Ueda U; Pouliot J
    Med Phys; 2013 Jan; 40(1):011702. PubMed ID: 23298072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light-Sheet Imaging to Elucidate Cardiovascular Injury and Repair.
    Ding Y; Lee J; Hsu JJ; Chang CC; Baek KI; Ranjbarvaziri S; Ardehali R; Packard RRS; Hsiai TK
    Curr Cardiol Rep; 2018 Mar; 20(5):35. PubMed ID: 29574550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Virtual Reality Surgical Simulations Using Fusion Three-Dimensional Images].
    Kin T
    No Shinkei Geka; 2024 Mar; 52(2):240-247. PubMed ID: 38514112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time optical gating for three-dimensional beating heart imaging.
    Taylor JM; Saunter CD; Love GD; Girkin JM; Henderson DJ; Chaudhry B
    J Biomed Opt; 2011 Nov; 16(11):116021. PubMed ID: 22112126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A virtual phantom library for the quantification of deformable image registration uncertainties in patients with cancers of the head and neck.
    Pukala J; Meeks SL; Staton RJ; Bova FJ; Mañon RR; Langen KM
    Med Phys; 2013 Nov; 40(11):111703. PubMed ID: 24320411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immersive virtual reality as a teaching tool for neuroanatomy.
    Stepan K; Zeiger J; Hanchuk S; Del Signore A; Shrivastava R; Govindaraj S; Iloreta A
    Int Forum Allergy Rhinol; 2017 Oct; 7(10):1006-1013. PubMed ID: 28719062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.