BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 3011279)

  • 21. A unique right end-enhancer complex precedes synapsis of Mu ends: the enhancer is sequestered within the transpososome throughout transposition.
    Pathania S; Jayaram M; Harshey RM
    EMBO J; 2003 Jul; 22(14):3725-36. PubMed ID: 12853487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Action at a distance in Mu DNA transposition: an enhancer-like element is the site of action of supercoiling relief activity by integration host factor (IHF).
    Surette MG; Lavoie BD; Chaconas G
    EMBO J; 1989 Nov; 8(11):3483-9. PubMed ID: 2555166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.
    Namgoong SY; Harshey RM
    EMBO J; 1998 Jul; 17(13):3775-85. PubMed ID: 9649447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Switch in the transposition products of Mu DNA mediated by proteins: Cointegrates versus simple insertions.
    Harshey RM
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):2012-6. PubMed ID: 6300888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The mu transpososome through a topological lens.
    Harshey RM; Jayaram M
    Crit Rev Biochem Mol Biol; 2006; 41(6):387-405. PubMed ID: 17092824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of bacteriophage Mu DNA transposition.
    Chaconas G; Harshey RM; Sarvetnick N; Bukhari AI
    Cold Spring Harb Symp Quant Biol; 1981; 45 Pt 1():311-22. PubMed ID: 6271478
    [No Abstract]   [Full Text] [Related]  

  • 27. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation.
    Mizuuchi M; Mizuuchi K
    Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Importance of the conserved CA dinucleotide at Mu termini.
    Lee I; Harshey RM
    J Mol Biol; 2001 Nov; 314(3):433-44. PubMed ID: 11846557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transposition of Mu DNA: joining of Mu to target DNA can be uncoupled from cleavage at the ends of Mu.
    Craigie R; Mizuuchi K
    Cell; 1987 Nov; 51(3):493-501. PubMed ID: 2822259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA inversion in bacteriophage Mu: characterization of the inversion site.
    Schmucker R; Ritthaler W; Stern B; Kamp D
    J Gen Virol; 1986 Jun; 67 ( Pt 6)():1123-33. PubMed ID: 3011972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A truncated form of the bacteriophage Mu B protein promotes conservative integration, but not replicative transposition, of Mu DNA.
    Chaconas G; Giddens EB; Miller JL; Gloor G
    Cell; 1985 Jul; 41(3):857-65. PubMed ID: 2988792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA-protein cooperativity in the assembly and stabilization of mu strand transfer complex. Relevance of DNA phasing and att site cleavage.
    Namgoong SY; Jayaram M; Kim K; Harshey RM
    J Mol Biol; 1994 May; 238(4):514-27. PubMed ID: 8176742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flanking host sequences can exert an inhibitory effect on the cleavage step of the in vitro mu DNA strand transfer reaction.
    Wu Z; Chaconas G
    J Biol Chem; 1992 May; 267(14):9552-8. PubMed ID: 1315758
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA sequences at the ends of the genome of bacteriophage Mu essential for transposition.
    Groenen MA; Timmers E; van de Putte P
    Proc Natl Acad Sci U S A; 1985 Apr; 82(7):2087-91. PubMed ID: 2984681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crucial role for DNA supercoiling in Mu transposition: a kinetic study.
    Wang Z; Harshey RM
    Proc Natl Acad Sci U S A; 1994 Jan; 91(2):699-703. PubMed ID: 8290584
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites.
    Williams TL; Jackson EL; Carritte A; Baker TA
    Genes Dev; 1999 Oct; 13(20):2725-37. PubMed ID: 10541558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic aspects of DNA transposition.
    Haniford DB; Chaconas G
    Curr Opin Genet Dev; 1992 Oct; 2(5):698-704. PubMed ID: 1333854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of transposition of bacteriophage Mu: polarity of the strand transfer reaction at the initiation of transposition.
    Mizuuchi K
    Cell; 1984 Dec; 39(2 Pt 1):395-404. PubMed ID: 6094017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site.
    Watson MA; Chaconas G
    Cell; 1996 May; 85(3):435-45. PubMed ID: 8616898
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for a conservative pathway of transposition of bacteriophage Mu.
    Akroyd JE; Symonds N
    Nature; 1983 May 5-11; 303(5912):84-6. PubMed ID: 6302516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.