These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 30112828)

  • 41. Bioinspired organocatalytic aerobic C-H oxidation of amines with an ortho-quinone catalyst.
    Qin Y; Zhang L; Lv J; Luo S; Cheng JP
    Org Lett; 2015 Mar; 17(6):1469-72. PubMed ID: 25761008
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and use of an asymmetric transfer hydrogenation catalyst based on iron(II) for the synthesis of enantioenriched alcohols and amines.
    Zuo W; Morris RH
    Nat Protoc; 2015 Feb; 10(2):241-57. PubMed ID: 25569331
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cobalt nanoparticles supported on N-doped mesoporous carbon as a highly efficient catalyst for the synthesis of aromatic amines.
    Cui X; Liang K; Tian M; Zhu Y; Ma J; Dong Z
    J Colloid Interface Sci; 2017 Sep; 501():231-240. PubMed ID: 28456107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Double stereodifferentiation in the catalytic asymmetric aziridination of imines prepared from α-chiral amines.
    Huang L; Zhang Y; Staples RJ; Huang RH; Wulff WD
    Chemistry; 2012 Apr; 18(17):5302-13. PubMed ID: 22434622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Catalytic asymmetric umpolung reactions of imines.
    Wu Y; Hu L; Li Z; Deng L
    Nature; 2015 Jul; 523(7561):445-50. PubMed ID: 26201597
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct and mild palladium-catalyzed aerobic oxidative synthesis of imines from alcohols and amines under ambient conditions.
    Jiang L; Jin L; Tian H; Yuan X; Yu X; Xu Q
    Chem Commun (Camb); 2011 Oct; 47(38):10833-5. PubMed ID: 21869963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metal-Free Oxidative Coupling of Benzylamines to Imines under an Oxygen Atmosphere Promoted Using Salicylic Acid Derivatives as Organocatalysts.
    Dong CP; Higashiura Y; Marui K; Kumazawa S; Nomoto A; Ueshima M; Ogawa A
    ACS Omega; 2016 Nov; 1(5):799-807. PubMed ID: 31457163
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metal-Organic Frameworks with Organogold(III) Complexes for Photocatalytic Amine Oxidation with Enhanced Efficiency and Selectivity.
    Han Q; Wang YL; Sun M; Sun CY; Zhu SS; Wang XL; Su ZM
    Chemistry; 2018 Oct; 24(56):15089-15095. PubMed ID: 30051935
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Copper-Catalyzed Formylation of Amines by using Methanol as the C1 Source.
    Pichardo MC; Tavakoli G; Armstrong JE; Wilczek T; Thomas BE; Prechtl MHG
    ChemSusChem; 2020 Mar; 13(5):882-887. PubMed ID: 31916381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tandem oxidative processes catalyzed by polymer-incarcerated multimetallic nanoclusters with molecular oxygen.
    Miyamura H; Kobayashi S
    Acc Chem Res; 2014 Apr; 47(4):1054-66. PubMed ID: 24661043
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Azobisisobutyronitrile initiated aerobic oxidative transformation of amines: coupling of primary amines and cyanation of tertiary amines.
    Liu L; Wang Z; Fu X; Yan CH
    Org Lett; 2012 Nov; 14(22):5692-5. PubMed ID: 23106189
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective aerobic oxidation of methanol in the coexistence of amines by nanoporous gold catalysts: highly efficient synthesis of formamides.
    Tanaka S; Minato T; Ito E; Hara M; Kim Y; Yamamoto Y; Asao N
    Chemistry; 2013 Sep; 19(36):11832-6. PubMed ID: 23946236
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidation of primary amines to oximes with molecular oxygen using 1,1-diphenyl-2-picrylhydrazyl and WO3/Al2O3 as catalysts.
    Suzuki K; Watanabe T; Murahashi S
    J Org Chem; 2013 Mar; 78(6):2301-10. PubMed ID: 23437775
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications.
    Largeron M
    Org Biomol Chem; 2017 Jun; 15(22):4722-4730. PubMed ID: 28474720
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Phosphine-Oxide Cobalt(II) Complex and Its Catalytic Activity Studies toward Alcohol Dehydrogenation Triggered Direct Synthesis of Imines and Quinolines.
    Khatua M; Goswami B; Devi A; Kamal ; Hans S; Samanta S
    Inorg Chem; 2024 May; 63(21):9786-9800. PubMed ID: 38739882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A trifunctional catalyst for one-pot synthesis of chiral diols via Heck coupling-N-oxidation-asymmetric dihydroxylation: application for the synthesis of diltiazem and taxol side chain.
    Choudary BM; Chowdari NS; Madhi S; Kantam ML
    J Org Chem; 2003 Mar; 68(5):1736-46. PubMed ID: 12608786
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A bioinspired catalytic aerobic oxidative C-H functionalization of primary aliphatic amines: synthesis of 1,2-disubstituted benzimidazoles.
    Nguyen KM; Largeron M
    Chemistry; 2015 Sep; 21(36):12606-10. PubMed ID: 26206475
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ruthenium-catalyzed transfer hydrogenation of imines by propan-2-ol in benzene.
    Samec JS; Bäckvall JE
    Chemistry; 2002 Jul; 8(13):2955-61. PubMed ID: 12489225
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Air-Stable Iron(III) Salen Complexes for Selective Hydroboration of Ketones and Unactivated Imines without Base Activation.
    Latha AT; P CAS
    J Org Chem; 2024 Jun; 89(12):8376-8384. PubMed ID: 38847608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.