These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 30113213)
1. SDH2 is involved in proper hypha formation and virulence in Candida albicans. Bi S; Lv QZ; Wang TT; Fuchs BB; Hu DD; Anastassopoulou CG; Desalermos A; Muhammed M; Wu CL; Jiang YY; Mylonakis E; Wang Y Future Microbiol; 2018 Aug; 13(10):1141-1156. PubMed ID: 30113213 [TBL] [Abstract][Full Text] [Related]
2. ADH1 promotes Candida albicans pathogenicity by stimulating oxidative phosphorylation. Song Y; Li S; Zhao Y; Zhang Y; Lv Y; Jiang Y; Wang Y; Li D; Zhang H Int J Med Microbiol; 2019 Sep; 309(6):151330. PubMed ID: 31471070 [TBL] [Abstract][Full Text] [Related]
3. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Pukkila-Worley R; Peleg AY; Tampakakis E; Mylonakis E Eukaryot Cell; 2009 Nov; 8(11):1750-8. PubMed ID: 19666778 [TBL] [Abstract][Full Text] [Related]
4. Candida albicans VPS4 contributes differentially to epithelial and mucosal pathogenesis. Rane HS; Hardison S; Botelho C; Bernardo SM; Wormley F; Lee SA Virulence; 2014; 5(8):810-8. PubMed ID: 25483774 [TBL] [Abstract][Full Text] [Related]
5. Asc1, a WD-repeat protein, is required for hyphal development and virulence in Candida albicans. Liu X; Nie X; Ding Y; Chen J Acta Biochim Biophys Sin (Shanghai); 2010 Nov; 42(11):793-800. PubMed ID: 20929924 [TBL] [Abstract][Full Text] [Related]
6. Rapid proliferation due to better metabolic adaptation results in full virulence of a filament-deficient Candida albicans strain. Dunker C; Polke M; Schulze-Richter B; Schubert K; Rudolphi S; Gressler AE; Pawlik T; Prada Salcedo JP; Niemiec MJ; Slesiona-Künzel S; Swidergall M; Martin R; Dandekar T; Jacobsen ID Nat Commun; 2021 Jun; 12(1):3899. PubMed ID: 34162849 [TBL] [Abstract][Full Text] [Related]
7. Physiologic expression of the Candida albicans pescadillo homolog is required for virulence in a murine model of hematogenously disseminated candidiasis. Uppuluri P; Chaturvedi AK; Jani N; Pukkila-Worley R; Monteagudo C; Mylonakis E; Köhler JR; Lopez Ribot JL Eukaryot Cell; 2012 Dec; 11(12):1552-6. PubMed ID: 23104566 [TBL] [Abstract][Full Text] [Related]
8. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans. Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088 [TBL] [Abstract][Full Text] [Related]
9. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans. Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074 [TBL] [Abstract][Full Text] [Related]
10. Lactobacillus paracasei 28.4 reduces in vitro hyphae formation of Candida albicans and prevents the filamentation in an experimental model of Caenorhabditis elegans. de Barros PP; Scorzoni L; Ribeiro FC; Fugisaki LRO; Fuchs BB; Mylonakis E; Jorge AOC; Junqueira JC; Rossoni RD Microb Pathog; 2018 Apr; 117():80-87. PubMed ID: 29432910 [TBL] [Abstract][Full Text] [Related]
11. Candida albicans adhesin Als3p is dispensable for virulence in the mouse model of disseminated candidiasis. Cleary IA; Reinhard SM; Miller CL; Murdoch C; Thornhill MH; Lazzell AL; Monteagudo C; Thomas DP; Saville SP Microbiology (Reading); 2011 Jun; 157(Pt 6):1806-1815. PubMed ID: 21436220 [TBL] [Abstract][Full Text] [Related]
12. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis. Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477 [TBL] [Abstract][Full Text] [Related]
14. Differential filamentation of Candida albicans and Candida dubliniensis Is governed by nutrient regulation of UME6 expression. O'Connor L; Caplice N; Coleman DC; Sullivan DJ; Moran GP Eukaryot Cell; 2010 Sep; 9(9):1383-97. PubMed ID: 20639413 [TBL] [Abstract][Full Text] [Related]
15. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. Bahn YS; Sundstrom P J Bacteriol; 2001 May; 183(10):3211-23. PubMed ID: 11325951 [TBL] [Abstract][Full Text] [Related]
16. Histone acetyltransferase encoded by NGG1 is required for morphological conversion and virulence of Candida albicans. Li DD; Fuchs BB; Wang Y; Huang XW; Hu DD; Sun Y; Chai D; Jiang YY; Mylonakis E Future Microbiol; 2017 Dec; 12():1497-1510. PubMed ID: 29110536 [TBL] [Abstract][Full Text] [Related]
17. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Jackson BE; Wilhelmus KR; Mitchell BM Microb Pathog; 2007; 42(2-3):88-93. PubMed ID: 17241762 [TBL] [Abstract][Full Text] [Related]
18. Enterococcus faecalis inhibits hyphal morphogenesis and virulence of Candida albicans. Cruz MR; Graham CE; Gagliano BC; Lorenz MC; Garsin DA Infect Immun; 2013 Jan; 81(1):189-200. PubMed ID: 23115035 [TBL] [Abstract][Full Text] [Related]
19. The role of Candida albicans SPT20 in filamentation, biofilm formation and pathogenesis. Tan X; Fuchs BB; Wang Y; Chen W; Yuen GJ; Chen RB; Jayamani E; Anastassopoulou C; Pukkila-Worley R; Coleman JJ; Mylonakis E PLoS One; 2014; 9(4):e94468. PubMed ID: 24732310 [TBL] [Abstract][Full Text] [Related]
20. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]