These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30113800)

  • 1. Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers.
    Cui T; Zhu Z; Cheng R; Tong YL; Peng G; Wang CF; Chen S
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30785-30793. PubMed ID: 30113800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microarrays formed by microfluidic spinning as multidimensional microreactors.
    Xu LL; Wang CF; Chen S
    Angew Chem Int Ed Engl; 2014 Apr; 53(15):3988-92. PubMed ID: 24595996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Phase Inversion-Based Microfluidic Fabrication of Helical Microfibers towards Versatile Artificial Abdominal Skin.
    Liu JD; Du XY; Chen S
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25089-25096. PubMed ID: 34505753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Scale Production of Continuous Hydrogel Fibers with Anisotropic Swelling Behavior by Dynamic-Crosslinking-Spinning.
    Hou K; Wang H; Lin Y; Chen S; Yang S; Cheng Y; Hsiao BS; Zhu M
    Macromol Rapid Commun; 2016 Nov; 37(22):1795-1801. PubMed ID: 27739218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissolvable Calcium Alginate Microfibers Produced via Immersed Microfluidic Spinning.
    Zhou T; NajafiKhoshnoo S; Esfandyarpour R; Kulinsky L
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple Fabrication of Multicomponent Heterogeneous Fibers for Cell Co-Culture via Microfluidic Spinning.
    Yao K; Li W; Li K; Wu Q; Gu Y; Zhao L; Zhang Y; Gao X
    Macromol Biosci; 2020 Mar; 20(3):e1900395. PubMed ID: 32141708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Synthesis of Robust Polyvinylpyrrolidone-Based Perovskite Nanocrystal Powders by the Fiber-Spinning Chemistry Method and Their Versatile 3D Printing Patterns.
    Dong T; Zhao J; Li G; Li FC; Li Q; Chen S
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39748-39754. PubMed ID: 34382763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High quantum-yield CdSexS1-x/ZnS core/shell quantum dots for warm white light-emitting diodes with good color rendering.
    Duan H; Jiang Y; Zhang Y; Sun D; Liu C; Huang J; Lan X; Zhou H; Chen L; Zhong H
    Nanotechnology; 2013 Jul; 24(28):285201. PubMed ID: 23787792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic spinning of editable polychromatic fibers.
    Zhang W; Hou C; Li Y; Zhang Q; Wang H
    J Colloid Interface Sci; 2020 Jan; 558():115-122. PubMed ID: 31585220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Necklace-Like Microfibers with Variable Knots and Perfusable Channels Fabricated by an Oil-Free Microfluidic Spinning Process.
    Xie R; Xu P; Liu Y; Li L; Luo G; Ding M; Liang Q
    Adv Mater; 2018 Apr; 30(14):e1705082. PubMed ID: 29484717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Throughput and Controllable Fabrication of Helical Microfibers by Hydrodynamically Focusing Flow.
    Ma W; Liu D; Ling S; Zhang J; Chen Z; Lu Y; Xu J
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59392-59399. PubMed ID: 34851622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic-directed biomimetic
    Guo Y; Yan J; Xin JH; Wang L; Yu X; Fan L; Liu P; Yu H
    Lab Chip; 2021 Jun; 21(13):2594-2604. PubMed ID: 34008681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Polymeric Helical and Superhelical Microfibers via Microfluidic Spinning.
    Yang H; Guo M
    Macromol Rapid Commun; 2019 Jun; 40(12):e1900111. PubMed ID: 30969013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the magic size of white light-emitting CdSe quantum dots.
    Dai S; Su YS; Chung SR; Wang KW; Pan X
    Nanoscale; 2018 May; 10(21):10256-10261. PubMed ID: 29790557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology.
    Du XY; Li Q; Wu G; Chen S
    Adv Mater; 2019 Dec; 31(52):e1903733. PubMed ID: 31573714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Fabrication of Microfluidic Chips for 3D Hydrodynamic Focusing and Wet Spinning of Polymeric Fibers.
    Gursoy A; Iranshahi K; Wei K; Tello A; Armagan E; Boesel LF; Sorin F; Rossi RM; Defraeye T; Toncelli C
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32164361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Centrifugal Spinning Enables the Formation of Silver Microfibers with Nanostructures.
    Zhang X; Tang S; Wu Z; Chen Y; Li Z; Wang Z; Zhou J
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immuno-capture and in situ detection of Salmonella typhimurium on a novel microfluidic chip.
    Wang R; Ni Y; Xu Y; Jiang Y; Dong C; Chuan N
    Anal Chim Acta; 2015 Jan; 853():710-717. PubMed ID: 25467522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Phosphine-Free Route to Size-Adjustable CdSe and CdSe/CdS Core-Shell Quantum Dots for White-Light-Emitting Diodes.
    Zhang Y; Li G; Zhang T; Song Z; Wang H; Zhang Z; Jiang Y
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1864-1869. PubMed ID: 29448673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.