These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 30113820)

  • 1. Impact of Chemoeffectors on Bacterial Motility, Transport, and Contaminant Degradation in Sand-Filled Percolation Columns.
    Jimenez-Sanchez C; Wick LY; Ortega-Calvo JJ
    Environ Sci Technol; 2018 Sep; 52(18):10673-10679. PubMed ID: 30113820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical effectors cause different motile behavior and deposition of bacteria in porous media.
    Jimenez-Sanchez C; Wick LY; Ortega-Calvo JJ
    Environ Sci Technol; 2012 Jun; 46(12):6790-7. PubMed ID: 22642849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemoeffectors decrease the deposition of chemotactic bacteria during transport in porous media.
    Velasco-Casal P; Wick LY; Ortega-Calvo JJ
    Environ Sci Technol; 2008 Feb; 42(4):1131-7. PubMed ID: 18351083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Taxis-mediated bacterial transport and its implication for the cometabolism of pyrene in a model aquifer.
    Castilla-Alcantara JC; Posada-Baquero R; Ortega-Calvo JJ
    Water Res; 2024 Jan; 248():120850. PubMed ID: 37976951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of dissolved organic matter on bacterial tactic motility, attachment, and transport.
    Jimenez-Sanchez C; Wick LY; Cantos M; Ortega-Calvo JJ
    Environ Sci Technol; 2015 Apr; 49(7):4498-505. PubMed ID: 25734420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of tactic response on the mobilization of motile bacteria through micrometer-sized pores.
    Castilla-Alcantara JC; Akbari A; Ghoshal S; Ortega-Calvo JJ
    Sci Total Environ; 2022 Aug; 832():154938. PubMed ID: 35390372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Environ Pollut; 2017 Oct; 229():49-59. PubMed ID: 28577382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial tactic response to silver nanoparticles.
    Ortega-Calvo JJ; Molina R; Jimenez-Sanchez C; Dobson PJ; Thompson IP
    Environ Microbiol Rep; 2011 Oct; 3(5):526-34. PubMed ID: 23761331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotaxis Increases the Residence Time of Bacteria in Granular Media Containing Distributed Contaminant Sources.
    Adadevoh JS; Triolo S; Ramsburg CA; Ford RM
    Environ Sci Technol; 2016 Jan; 50(1):181-7. PubMed ID: 26605857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contaminant concentration versus flow velocity: drivers of biodegradation and microbial growth in groundwater model systems.
    Grösbacher M; Eckert D; Cirpka OA; Griebler C
    Biodegradation; 2018 Jun; 29(3):211-232. PubMed ID: 29492777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation during contaminant transport in porous media: 6. Impact of sorption on coupled degradation-transport behavior.
    Famisan GB; Brusseau ML
    Environ Toxicol Chem; 2003 Mar; 22(3):510-7. PubMed ID: 12627636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of chemotaxis to naphthalene by Pseudomonas putida G7.
    Marx RB; Aitken MD
    Appl Environ Microbiol; 1999 Jul; 65(7):2847-52. PubMed ID: 10388674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impacts of input concentration, grain size and flow rate.
    Hou J; Zhang M; Wang P; Wang C; Miao L; Xu Y; You G; Lv B; Yang Y; Liu Z
    Water Res; 2017 Dec; 127():86-95. PubMed ID: 29035769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.
    Mitzel MR; Tufenkji N
    Environ Sci Technol; 2014; 48(5):2715-23. PubMed ID: 24552618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation in a partially saturated sand matrix: compounding effects of water content, bacterial spatial distribution, and motility.
    Dechesne A; Owsianiak M; Bazire A; Grundmann GL; Binning PJ; Smets BF
    Environ Sci Technol; 2010 Apr; 44(7):2386-92. PubMed ID: 20192168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse bacterial migration induced by chemotaxis in a packed column with structured physical heterogeneity.
    Wang M; Ford RM
    Environ Sci Technol; 2009 Aug; 43(15):5921-7. PubMed ID: 19731698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms.
    He JZ; Wang DJ; Fang H; Fu QL; Zhou DM
    Chemosphere; 2017 Feb; 169():1-8. PubMed ID: 27855326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distribution and physiological state of bacteria in a sand column experiment during the biodegradation of toluene.
    Kim HS; Jaffé PR
    Water Res; 2007 May; 41(10):2089-100. PubMed ID: 17397899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of experiments on bacterial chemotaxis to naphthalene.
    Pedit JA; Marx RB; Miller CT; Aitken MD
    Biotechnol Bioeng; 2002 Jun; 78(6):626-34. PubMed ID: 11992528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium.
    Liu J; Ford RM; Smith JA
    Environ Sci Technol; 2011 May; 45(9):3945-51. PubMed ID: 21456575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.