These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30113893)

  • 1. Lamplight Stabilization for GPS Rb Atomic Clocks via RF-Power Control.
    Huang M; Stapleton A; Camparo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Oct; 65(10):1804-1809. PubMed ID: 30113893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigation of Lamplight-Induced Frequency Jumps in Space Rubidium Clocks.
    Formichella V; Camparo J; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):911-918. PubMed ID: 29856707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does the light shift drive frequency aging in the rubidium atomic clock?
    Camparo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jul; 52(7):1075-8. PubMed ID: 16212246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Method for Rubidium Bulb Bonding and Key Characterization for Future Space Clocks.
    Bandi TN; Kesarkar RS; Suthar P; Saiyed MA; Attri D; Soni A; Karthik K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1563-1571. PubMed ID: 35133961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigation of lamp oven and cavity oven temperature-induced frequency variation in rubidium atomic clock.
    Guo Y; Wang S; Zhu L; Cai Z; Lu F; Li W; Liu Z
    Rev Sci Instrum; 2023 Jan; 94(1):014706. PubMed ID: 36725575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spectroscopy study of rubidium spectrum lamps].
    Wang F; Zhao F; Qi F; Wu HH; Zhong D; Mei GH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 May; 29(5):1164-7. PubMed ID: 19650444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Frequency-Doubled 1.5- m Lasers for High-Performance Rb Clocks.
    Almat N; Moreno W; Pellaton M; Gruet F; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):919-926. PubMed ID: 29856708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Stability Analysis Toward <10
    Almat N; Gharavipour M; Moreno W; Gruet F; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jan; 67(1):207-216. PubMed ID: 31514134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated chip-scale rubidium plasma light source for miniature atomic clocks.
    Venkatraman V; Pétremand Y; Affolderbach C; Mileti G; de Rooij NF; Shea H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):448-56. PubMed ID: 22481778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.
    Khare A; Arora R; Banik A; Mehta SD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):326-35. PubMed ID: 26685233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Monitoring for BDS Signal-In-Space Anomalies Using Ground Observation Data.
    Jiang H; Wang H; Wang Z; Yuan Y
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29867049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light shift suppression with pulsed light detection in magnetic-state-selected cesium beam clocks.
    Li Y; Xu S; Chen S; Liu C; Wang J; Wang Y
    Opt Express; 2022 Nov; 30(24):43271-43280. PubMed ID: 36523028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous excitation of
    Gan Q; Shang J; Ji Y; Wu L
    Rev Sci Instrum; 2017 Nov; 88(11):115009. PubMed ID: 29195395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barometric Effect in Vapor-Cell Atomic Clocks.
    Moreno W; Pellaton M; Affolderbach C; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1500-1503. PubMed ID: 29993546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Faraday laser lasing on Rb 1529 nm transition.
    Chang P; Peng H; Zhang S; Chen Z; Luo B; Chen J; Guo H
    Sci Rep; 2017 Aug; 7(1):8995. PubMed ID: 28827670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Use of Ramsey-CPT Spectroscopy for a Microcell-Based Atomic Clock.
    Carle C; Petersen M; Passilly N; Hafiz MA; de Clercq E; Boudot R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Oct; 68(10):3249-3256. PubMed ID: 34077357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure sensitivity of the vapor-cell atomic clock.
    Iyanu G; Wang H; Camparo J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jun; 56(6):1139-44. PubMed ID: 19574121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Real-Time Detection Method for BDS Signal in Space Anomalies.
    Cheng C; Zhao Y; Li L; Zhao L
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30909586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in-orbit performances of GIOVE clocks.
    Waller P; Gonzalez F; Binda S; Sesia I; Hidalgo I; Tobias G; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):738-45. PubMed ID: 20211795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust Detection of Fast and Slow Frequency Jumps of Atomic Clocks.
    Galleani L; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):475-485. PubMed ID: 27834645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.