BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30113895)

  • 1. High Spatial-Temporal Resolution Reconstruction of Plane-Wave Ultrasound Images With a Multichannel Multiscale Convolutional Neural Network.
    Zhou Z; Wang Y; Yu J; Guo Y; Guo W; Qi Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):1983-1996. PubMed ID: 30113895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Image Quality for Single-Angle Plane Wave Ultrasound Imaging With Convolutional Neural Network Beamformer.
    Lu JY; Lee PY; Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1326-1336. PubMed ID: 35175918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction for Diverging-Wave Imaging Using Deep Convolutional Neural Networks.
    Lu J; Millioz F; Garcia D; Salles S; Liu W; Friboulet D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2481-2492. PubMed ID: 32286972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound image reconstruction from plane wave radio-frequency data by self-supervised deep neural network.
    Zhang J; He Q; Xiao Y; Zheng H; Wang C; Luo J
    Med Image Anal; 2021 May; 70():102018. PubMed ID: 33711740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust cascaded deep neural network for image reconstruction of single plane wave ultrasound RF data.
    Wasih M; Ahmad S; Almekkawy M
    Ultrasonics; 2023 Jul; 132():106981. PubMed ID: 36913830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thomson's multitaper approach combined with coherent plane-wave compounding to reduce speckle in ultrasound imaging.
    Toulemonde M; Basset O; Tortoli P; Cachard C
    Ultrasonics; 2015 Feb; 56():390-8. PubMed ID: 25262843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Quality Plane Wave Compounding Using Convolutional Neural Networks.
    Gasse M; Millioz F; Roux E; Garcia D; Liebgott H; Friboulet D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1637-1639. PubMed ID: 28792894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning.
    ViƱals R; Thiran JP
    J Imaging; 2023 Nov; 9(12):. PubMed ID: 38132674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CNN-Based Image Reconstruction Method for Ultrafast Ultrasound Imaging.
    Perdios D; Vonlanthen M; Martinez F; Arditi M; Thiran JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1154-1168. PubMed ID: 34847025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning a Convolutional Neural Network for Image Compact-Resolution.
    Li Y; Liu D; Li H; Li L; Li Z; Wu F
    IEEE Trans Image Process; 2019 Mar; 28(3):1092-1107. PubMed ID: 30281453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast Plane Wave Imaging With Line-Scan-Quality Using an Ultrasound-Transfer Generative Adversarial Network.
    Zhou Z; Wang Y; Guo Y; Jiang X; Qi Y
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):943-956. PubMed ID: 31675348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bearing-Fault Diagnosis with Signal-to-RGB Image Mapping and Multichannel Multiscale Convolutional Neural Network.
    Xu M; Gao J; Zhang Z; Wang H
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cascaded Convolutional Neural Network-Based Hyperspectral Image Resolution Enhancement via an Auxiliary Panchromatic Image.
    Lu X; Zhang J; Yang D; Xu L; Jia F
    IEEE Trans Image Process; 2021; 30():6815-6828. PubMed ID: 34310305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Cardiac Imaging Using Deep Learning for Speckle-Tracking Echocardiography.
    Lu J; Millioz F; Varray F; Poree J; Provost J; Bernard O; Garcia D; Friboulet D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Dec; 70(12):1761-1772. PubMed ID: 37862280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of Ultrasound Echogenicity Map from B-Mode Images Using Convolutional Neural Network.
    Shen CC; Yang JE
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32878199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-Memory Convolutional Neural Network for Video Super-Resolution.
    Wang Z; Yi P; Jiang K; Jiang J; Han Z; Lu T; Ma J
    IEEE Trans Image Process; 2018 Dec; ():. PubMed ID: 30571634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image Quality Improvement of Hand-Held Ultrasound Devices With a Two-Stage Generative Adversarial Network.
    Zhou Z; Wang Y; Guo Y; Qi Y; Yu J
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):298-311. PubMed ID: 31021759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coded Hyperspectral Image Reconstruction Using Deep External and Internal Learning.
    Fu Y; Zhang T; Wang L; Huang H
    IEEE Trans Pattern Anal Mach Intell; 2022 Jul; 44(7):3404-3420. PubMed ID: 33596170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion.
    Gong W; Chen H; Zhang Z; Zhang M; Wang R; Guan C; Wang Q
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
    Kang E; Min J; Ye JC
    Med Phys; 2017 Oct; 44(10):e360-e375. PubMed ID: 29027238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.