These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 30114028)
1. Sub-shot-noise-limited phase estimation via SU(1,1) interferometer with thermal states. Ma X; You C; Adhikari S; Matekole ES; Glasser RT; Lee H; Dowling JP Opt Express; 2018 Jul; 26(14):18492-18504. PubMed ID: 30114028 [TBL] [Abstract][Full Text] [Related]
2. Improving the phase sensitivity of an SU(1,1) interferometer with photon-added squeezed vacuum light. Guo LL; Yu YF; Zhang ZM Opt Express; 2018 Oct; 26(22):29099-29109. PubMed ID: 30470076 [TBL] [Abstract][Full Text] [Related]
3. Sub-shot-noise-limited phase estimation via single-mode inputs. Zhang JD; You C; Wang S Opt Express; 2022 Nov; 30(24):43143-43156. PubMed ID: 36523019 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of the phase sensitivity with two-mode squeezed coherent state based on a Mach-Zehnder interferometer. Liu J; Shao T; Wang Y; Zhang M; Hu Y; Chen D; Wei D Opt Express; 2023 Aug; 31(17):27735-27748. PubMed ID: 37710842 [TBL] [Abstract][Full Text] [Related]
5. Orbital-angular-momentum-enhanced estimation of sub-Heisenberg-limited angular displacement with two-mode squeezed vacuum and parity detection. Zhang JD; Zhang ZJ; Cen LZ; You C; Adhikari S; Dowling JP; Zhao Y Opt Express; 2018 Jun; 26(13):16524-16534. PubMed ID: 30119481 [TBL] [Abstract][Full Text] [Related]
6. Ultra-sensitive phase measurement based on an SU(1,1) interferometer employing external resources and substract intensity detection. Liu J; Wang Y; Zhang M; Wang J; Wei D; Gao H Opt Express; 2020 Dec; 28(26):39443-39452. PubMed ID: 33379493 [TBL] [Abstract][Full Text] [Related]
7. Subhertz interferometry at the quantum noise limit. Yang P; Xie B; Feng S Opt Lett; 2019 May; 44(9):2366-2369. PubMed ID: 31042224 [TBL] [Abstract][Full Text] [Related]
8. Optimized phase sensing in a truncated SU(1,1) interferometer. Gupta P; Schmittberger BL; Anderson BE; Jones KM; Lett PD Opt Express; 2018 Jan; 26(1):391-401. PubMed ID: 29328316 [TBL] [Abstract][Full Text] [Related]
10. Detection Loss Tolerant Supersensitive Phase Measurement with an SU(1,1) Interferometer. Manceau M; Leuchs G; Khalili F; Chekhova M Phys Rev Lett; 2017 Dec; 119(22):223604. PubMed ID: 29286807 [TBL] [Abstract][Full Text] [Related]
11. Phase sensitivity of an SU(1,1) interferometer in photon-loss via photon operations. Xu Y; Zhao T; Kang Q; Liu C; Hu L; Liu S Opt Express; 2023 Feb; 31(5):8414-8427. PubMed ID: 36859956 [TBL] [Abstract][Full Text] [Related]
12. Ultrasensitive two-mode interferometry with single-mode number squeezing. Pezzé L; Smerzi A Phys Rev Lett; 2013 Apr; 110(16):163604. PubMed ID: 23679603 [TBL] [Abstract][Full Text] [Related]
13. Phase estimation of an SU(1,1) interferometer with a coherent superposition squeezed vacuum in a realistic case. Xu Y; Chang S; Liu C; Hu L; Liu S Opt Express; 2022 Oct; 30(21):38178-38193. PubMed ID: 36258386 [TBL] [Abstract][Full Text] [Related]
14. Phase estimation of a Mach-Zehnder interferometer via the Laguerre excitation squeezed state. Zhao Z; Zhang H; Huang Y; Hu L Opt Express; 2023 May; 31(11):17645-17662. PubMed ID: 37381493 [TBL] [Abstract][Full Text] [Related]
16. Demonstration of a quantum-enhanced fiber Sagnac interferometer. Mehmet M; Eberle T; Steinlechner S; Vahlbruch H; Schnabel R Opt Lett; 2010 May; 35(10):1665-7. PubMed ID: 20479843 [TBL] [Abstract][Full Text] [Related]
17. Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise. Gu WJ; Wang YY; Yi Z; Yang WX; Sun LH Opt Express; 2020 Apr; 28(8):12460-12474. PubMed ID: 32403743 [TBL] [Abstract][Full Text] [Related]
18. Polarization-based truncated SU(1,1) interferometer based on four-wave mixing in Rb vapor. Prajapati N; Novikova I Opt Lett; 2019 Dec; 44(24):5921-5924. PubMed ID: 32628186 [TBL] [Abstract][Full Text] [Related]
19. Super-resolving quantum lidar: entangled coherent-state sources with binary-outcome photon counting measurement suffice to beat the shot-noise limit. Wang Q; Hao L; Zhang Y; Xu L; Yang C; Yang X; Zhao Y Opt Express; 2016 Mar; 24(5):5045-5056. PubMed ID: 29092333 [TBL] [Abstract][Full Text] [Related]
20. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit. Motes KR; Olson JP; Rabeaux EJ; Dowling JP; Olson SJ; Rohde PP Phys Rev Lett; 2015 May; 114(17):170802. PubMed ID: 25978219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]