BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30114073)

  • 1. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Location of Surface Plasmons Over Nanotriangle and Nanohole Arrays of Different Size and Periodicity.
    Correia-Ledo D; Gibson KF; Dhawan A; Couture M; Vo-Dinh T; Graham D; Masson JF
    J Phys Chem C Nanomater Interfaces; 2012 Mar; 116(12):6884-6892. PubMed ID: 23977402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
    Ho CC; Zhao K; Lee TY
    Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembled plasmonic nanohole arrays.
    Lee SH; Bantz KC; Lindquist NC; Oh SH; Haynes CL
    Langmuir; 2009 Dec; 25(23):13685-93. PubMed ID: 19831350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting Long-Range Surface-Enhanced Raman Scattering on Plasmonic Nanohole Arrays for Ultrasensitive Detection of MiRNA.
    Luo X; Zhu J; Jia W; Fang N; Wu P; Cai C; Zhu JJ
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18301-18313. PubMed ID: 33821612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FDTD Analysis of Hotspot-Enabling Hybrid Nanohole-Nanoparticle Structures for SERS Detection.
    Gomez-Cruz J; Bdour Y; Stamplecoskie K; Escobedo C
    Biosensors (Basel); 2022 Feb; 12(2):. PubMed ID: 35200388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates.
    Sharac N; Sharma H; Veysi M; Sanderson RN; Khine M; Capolino F; Ragan R
    Nanotechnology; 2016 Mar; 27(10):105302. PubMed ID: 26867001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced fluorescence from arrays of nanoholes in a gold film.
    Brolo AG; Kwok SC; Moffitt MG; Gordon R; Riordon J; Kavanagh KL
    J Am Chem Soc; 2005 Oct; 127(42):14936-41. PubMed ID: 16231950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD; Glembocki O; Bezares FJ; Bassim ND; Rendell RW; Feygelson M; Ukaegbu M; Kasica R; Shirey L; Hosten C
    ACS Nano; 2011 May; 5(5):4046-55. PubMed ID: 21480637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications.
    Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX
    Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the 3D plasmon field of nanohole arrays.
    Couture M; Liang Y; Poirier Richard HP; Faid R; Peng W; Masson JF
    Nanoscale; 2013 Dec; 5(24):12399-408. PubMed ID: 24162773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances.
    Sharma Y; Dhawan A
    Nanotechnology; 2014 Feb; 25(8):085202. PubMed ID: 24492249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays.
    Yu Q; Guan P; Qin D; Golden G; Wallace PM
    Nano Lett; 2008 Jul; 8(7):1923-8. PubMed ID: 18563939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Millimeter-Sized Suspended Plasmonic Nanohole Arrays for Surface-Tension-Driven Flow-Through SERS.
    Kumar S; Cherukulappurath S; Johnson TW; Oh SH
    Chem Mater; 2014 Nov; 26(22):6523-6530. PubMed ID: 25678744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates.
    Jubb AM; Jiao Y; Eres G; Retterer ST; Gu B
    Nanoscale; 2016 Mar; 8(10):5641-8. PubMed ID: 26893035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of the film of gold nanowire arrays on surface enhanced Raman scattering].
    Zhai XF; Mu C; Xu DS; Tong LM; Zhu T; Du WM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2329-32. PubMed ID: 19123400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.