These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30114147)

  • 1. Calibration of an in-water multi-excitation fluorometer for the measurement of phytoplankton chlorophyll-a fluorescence quantum yield.
    Griffith DJ; Bone EL; Thomalla SJ; Bernard S
    Opt Express; 2018 Jul; 26(15):18863-18877. PubMed ID: 30114147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria.
    Parésys G; Rigart C; Rousseau B; Wong AW; Fan F; Barbier JP; Lavaud J
    Water Res; 2005 Mar; 39(5):911-21. PubMed ID: 15743638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophyll-a determination via continuous measurement of plankton fluorescence: methodology development.
    Pinto AM; Von Sperling E; Moreira RM
    Water Res; 2001 Nov; 35(16):3977-81. PubMed ID: 12230181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freshwater phytoplankton quantification by chlorophyll a: a comparative study of in vitro, in vivo and in situ methods.
    Gregor J; Marsálek B
    Water Res; 2004 Feb; 38(3):517-22. PubMed ID: 14723919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on the characters of phytoplankton chlorophyll fluorescence excitation spectra based on fourth-derivative].
    Lu L; Su RG; Wang XL; Zhu CJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Nov; 27(11):2307-12. PubMed ID: 18260419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive and high-throughput analysis of chlorophyll a in marine phytoplankton extracts using a fluorescence microplate reader.
    Mandalakis M; Stravinskaitė A; Lagaria A; Psarra S; Polymenakou P
    Anal Bioanal Chem; 2017 Jul; 409(19):4539-4549. PubMed ID: 28540460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral fluorometric characterization of phytoplankton community composition using the Algae Online Analyser.
    Richardson TL; Lawrenz E; Pinckney JL; Guajardo RC; Walker EA; Paerl HW; MacIntyre HL
    Water Res; 2010 Apr; 44(8):2461-72. PubMed ID: 20163813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ measurements of phytoplankton fluorescence using low cost electronics.
    Leeuw T; Boss ES; Wright DL
    Sensors (Basel); 2013 Jun; 13(6):7872-83. PubMed ID: 23783738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of the dependence of the sun-induced chlorophyll a fluorescence quantum yield on the environmental factors in the sea.
    Ostrowska M
    Opt Express; 2012 Oct; 20(21):23300-17. PubMed ID: 23188293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll-a specific volume scattering function of phytoplankton.
    Tan H; Oishi T; Tanaka A; Doerffer R; Tan Y
    Opt Express; 2017 Jun; 25(12):A564-A573. PubMed ID: 28788838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aquatic laser fluorescence analyzer: field evaluation in the northern Gulf of Mexico.
    Chekalyuk A; Barnard A; Quigg A; Hafez M; Zhao Y
    Opt Express; 2014 Sep; 22(18):21641-56. PubMed ID: 25321542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the effect of nonphotochemical quenching on the determination of in vivo chl a from phytoplankton along the water column of a freshwater reservoir.
    Serra T; Borrego C; Quintana X; Calderer L; López R; Colomer J
    Photochem Photobiol; 2009; 85(1):321-31. PubMed ID: 18811624
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Álvarez E; Nogueira E; López-Urrutia Á
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28115378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fluorescence peak shift corresponding to high chlorophyll concentrations in inland water].
    Duan HT; Ma RH; Zhang YZ; Zhang B
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Jan; 29(1):161-4. PubMed ID: 19385229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoplankton. The fate of photons absorbed by phytoplankton in the global ocean.
    Lin H; Kuzminov FI; Park J; Lee S; Falkowski PG; Gorbunov MY
    Science; 2016 Jan; 351(6270):264-7. PubMed ID: 26743625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The method of phytoplankton photosynthesis activity in-situ measurement based on light induced fluorescence].
    Liu J; Liu WQ; Zhao NJ; Zhang YJ; Ma MJ; Yin GF; Dai PD; Wang ZG; Wang CL; Duan JB; Yu XY; Fang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Sep; 33(9):2443-7. PubMed ID: 24369649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution fluorometer for mapping microscale phytoplankton distributions.
    Doubell MJ; Seuront L; Seymour JR; Patten NL; Mitchell JG
    Appl Environ Microbiol; 2006 Jun; 72(6):4475-8. PubMed ID: 16751572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of hard substratum reflection and calibration profiles on in situ fluorescence measurements of benthic microalgal biomass.
    Carpentier C; Dahlhaus A; van de Giesen N; Maršálek B
    Environ Sci Process Impacts; 2013 Apr; 15(4):783-93. PubMed ID: 23400336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intact and photomodified polycyclic aromatic hydrocarbons inhibit photosynthesis in natural assemblages of Lake Erie phytoplankton exposed to solar radiation.
    Marwood CA; Smith RE; Solomon KR; Charlton MN; Greenberg BM
    Ecotoxicol Environ Saf; 1999 Nov; 44(3):322-7. PubMed ID: 10581126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake.
    Dörnhöfer K; Klinger P; Heege T; Oppelt N
    Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.